S100A10 Regulates ULK1 Localization to ER-Mitochondria Contact Sites in IFN-γ-Triggered Autophagy.

J Mol Biol

Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

Published: January 2017

During the process of autophagy, the autophagy-related proteins are translocated to autophagosome formation sites. Here, we demonstrate that S100A10 is required for ULK1 localization to autophagosome formation sites. Silencing of S100A10 reduces IFN-γ-induced autophagosome formation. We also determined the role of annexin A2 (ANXA2), a binding partner of S100A10, which has been reported to promote phagophore assembly. Silencing of ANXA2 reduced S100A10 expression. However, overexpression of S100A10 in ANXA2-silenced cells was still able to enhance autophagosome formation, suggesting that ANXA2 regulates IFN-γ-induced autophagy through S100A10. We also observed that S100A10 interacted with ULK1 after IFN-γ stimulation, and S100A10 knockdown prevented ULK1 localization to autophagosome formation sites. Finally, the release of high mobility group protein B1, one of the functions mediated by IFN-γ-induced autophagy, was inhibited in S100A10 knockdown cells. These results elucidate the importance of S100A10 in autophagosome formation and reveal the relationship between S100A10 and ULK1 in IFN-γ-induced autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2016.11.009DOI Listing

Publication Analysis

Top Keywords

autophagosome formation
24
s100a10
12
ulk1 localization
12
formation sites
12
ifn-γ-induced autophagy
12
localization autophagosome
8
s100a10 knockdown
8
autophagosome
6
formation
6
ulk1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!