Background: The Micra transcatheter pacemaker was designed to have similar functionality to conventional transvenous VVIR pacing systems. It provides rate adaptive pacing using a programmable 3-axis accelerometer designed to detect patient activity in the presence of cardiac motion.

Objective: The purpose of this study was to evaluate the system's performance during treadmill tests to maximum exertion in a subset of patients within the Micra Transcatheter Pacing Study.

Methods: Patients underwent treadmill testing at 3 or 6 months postimplant with algorithm programming at physician discretion. Normalized sensor rate (SenR) relative to the programmed upper sensor rate was modeled as a function of normalized workload in metabolic equivalents (METS) relative to maximum METS achieved during the test. A normalized METS and SenR were determined at the end of each 1-minute treadmill stage. The proportionality of SenR to workload was evaluated by comparing the slope from this relationship to the prospectively defined tolerance margin (0.65-1.35).

Results: A total of 69 treadmill tests were attempted by 42 patients at 3 and 6 months postimplant. Thirty tests from 20 patients who completed ≥4 stages with an average slope of 0.86 (90% confidence interval 0.77-0.96) confirmed proportionality to workload. On an individual test basis, 25 of 30 point estimates (83.3%) had a normalized slope within the defined tolerance range (range 0.46-1.08).

Conclusion: Accelerometer-based rate adaptive pacing was proportional to workload, thus confirming rate adaptive pacing commensurate to workload is achievable with an entirely intracardiac pacing system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2016.11.016DOI Listing

Publication Analysis

Top Keywords

rate adaptive
16
adaptive pacing
16
micra transcatheter
8
treadmill tests
8
months postimplant
8
sensor rate
8
defined tolerance
8
pacing
7
rate
6
workload
5

Similar Publications

Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.

View Article and Find Full Text PDF

Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis.

Glob Chang Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.

Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.

View Article and Find Full Text PDF

Introduction: SLE is a chronic autoimmune disease that results in sustained hyperactivation of innate and adaptive immune cells and widespread inflammatory damage. Regular exercise reduces SLE symptoms including fatigue and joint pain and improves patient quality of life. However, most individuals with SLE are not sufficiently active to achieve these benefits, and guidance on the optimal approach to exercise is limited.

View Article and Find Full Text PDF

Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.

Materials And Methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!