Background: In this study, six enzyme-linked immunosorbent assays (ELISA), intended for routine porcine reproductive and respiratory syndrome virus (PRRSV) herd monitoring, are tested for their ability to detect PRRSV specific antibodies in the serum of pigs after vaccination with an inactivated PRRSV type 1 vaccine and subsequent infection with a highly pathogenic (HP) PRRSV field strain. For this reason, ten piglets (group V) from a PRRSV negative herd were vaccinated twice at the age of 2 and 4 weeks with an inactivated PRRSV vaccine. Ten additional piglets (group N) from the same herd remained unvaccinated. Three weeks after second vaccination, each of the piglets received an intradermal application of an HP PRRSV field strain. Serum samples were taken before first vaccination as well as before and 3, 7, 10 and 14 days after HP PRRSV application. All serum samples were tested for PRRSV RNA by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as well as for PRRSV antibodies with all six study ELISAs.

Results: At the beginning of the study (before vaccination), all of the piglets were PRRSV antibody negative with all study ELISAs. They also tested negative for PRRSV RNA measured by RT-qPCR. From day 3 after HP PRRSV application until the end of the study, a viremia was detected by RT-qPCR in all of the piglets. On day 0 (day of HP PRRSV application), nine out of ten piglets of the pre-vaccinated group tested PRRSV antibody positive with one of the tested ELISAs, although with lower S/P values than after infection. On day 10 after HP PRRSV application, all study ELISAs except one had significantly higher S/P or OD values, respectively more positive samples, in group V than in group N.

Conclusions: Only one of the tested ELISAs was able to detect reliably PRRSV antibodies in pigs vaccinated with an inactivated PRRSV vaccine. With most of the tested ELISAs, higher S/P values respectively more positive samples after PRRSV infection were seen in the pre-vaccinated group than in the non-vaccinated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117522PMC
http://dx.doi.org/10.1186/s12917-016-0888-0DOI Listing

Publication Analysis

Top Keywords

prrsv
19
prrsv application
16
inactivated prrsv
12
day prrsv
12
tested elisas
12
s/p values
12
elisas detect
8
syndrome virus
8
serum pigs
8
prrsv field
8

Similar Publications

A nucleocapsid monoclonal antibody based sandwich ELISA for the general detection of both PRRSV-2 and PRRSV-1.

Vet Microbiol

January 2025

College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (KPHF and HHTVR) were identified.

View Article and Find Full Text PDF

In silico design of multi-epitope vaccine candidate based on structural proteins of porcine reproductive and respiratory syndrome virus.

Vet Immunol Immunopathol

January 2025

Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed.

View Article and Find Full Text PDF

Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets.

View Article and Find Full Text PDF

Introduction: After being discovered for the first time in China in 2017, porcine reproductive and respiratory syndrome virus (PRRSV) NADC34-like strains have become the prevalent strain of PRRSV in certain regions of China. Our previous study showed that reduced Ingelvac PRRS MLV vaccination dosages against NADC30-like PRRSV had a better protection effect than the normal dosage. However, the protective effect of reduced dosages vaccination of Ingelvac PRRS MLV against NADC34-like PRRSV is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!