Islet endothelial cells produce paracrine factors that support β-cell function and growth. Endothelial dysfunction underlies diabetic microvascular complications; thus, we hypothesized that in diabetes, islet endothelial cells become dysfunctional, which may contribute to β-cell secretory dysfunction. Islets/islet endothelial cells were isolated from diabetic B6.BKS(D)-Leprdb/J male (db/db) mice, treated with or without the glucose-lowering agent phlorizin, or from C57BL/6J mice fed a high-fat diet for 18 weeks and appropriate controls. Messenger RNA (mRNA) and/or the protein levels of the cell adhesion molecule E-selectin (Sele), proinflammatory cytokine interleukin-6 (Il6), vasoconstrictor endothelin-1 (Edn1), and endothelial nitric oxide synthase (Nos3; Nos3) were evaluated, along with advanced glycation end product immunoreactivity. Furthermore, an islet endothelial cell line (MS-1) was exposed to diabetic factors (glucose, palmitate, insulin, and tumor necrosis factor-α) for six days. Conditioned media were collected from these cells, incubated with isolated islets, and glucose-stimulated insulin secretion and insulin content were assessed. Islet endothelial cells from db/db mice exhibited increased Sele, Il6, and Edn1 mRNA levels, decreased Nos3 protein, and accumulation of advanced glycation end products. Phlorizin treatment significantly increased Nos3 protein levels but did not alter expression of the other markers. High-fat feeding in C57BL/6J mice resulted in increased islet Sele, Il6, and Edn1 but no change in Nos3. Exposure of islets to conditioned media from MS-1 cells cultured in diabetic conditions resulted in a 50% decrease in glucose-stimulated insulin secretion and 30% decrease in insulin content. These findings demonstrate that, in diabetes, islet endothelial cells show evidence of a dysfunctional phenotype, which may contribute to loss of β-cell function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413084 | PMC |
http://dx.doi.org/10.1210/en.2016-1393 | DOI Listing |
Diabetol Metab Syndr
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.
Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.
Diabetologia
December 2024
Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
Aims/hypothesis: Pancreatic beta cell mass is dynamically regulated in response to increased physiological and pathological demands. Understanding the mechanisms that control physiological beta cell proliferation could provide valuable insights into novel therapeutic approaches to diabetes. Here, we aimed to analyse the intracellular and extracellular signalling pathways involved in regulating the physiological proliferation of beta cells using single-cell RNA-seq (scRNA-seq) and in vitro functional assays.
View Article and Find Full Text PDFBiofabrication
December 2024
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
Managing type 1 diabetes mellitus (T1DM) presents significant challenges because of the complexity of replicating the microenvironment of pancreatic islets and ensuring the long-term viability and function of transplanted insulin-producing cells (IPCs). This study developed a functional approach that utilizes 3D bioprinting technology to create pore-enriched and pre-vascularized tissue constructs incorporating a pancreatic tissue-derived decellularized extracellular matrix and human-induced pluripotent stem cells (hiPSCs) aimed at enhancing blood glucose regulation in T1DM. We designed a volumetric 3D pancreatic tissue construct that supported the engraftment, survival, and insulin-producing functionality of hiPSC-derived IPCs.
View Article and Find Full Text PDFJ Histochem Cytochem
December 2024
Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington.
The pancreatic islet vasculature comprises microvascular endothelial cells surrounded by mural cells (pericytes). Both cell types support the islet by providing (1) a conduit for delivery and exchange of nutrients and hormones; (2) paracrine signals and extracellular matrix (ECM) components that support islet development, architecture, and endocrine function; and (3) a barrier against inflammation and immune cell infiltration. In type 2 diabetes, the islet vasculature becomes inflamed, showing loss of endothelial cells, detachment, and/or trans-differentiation of pericytes, vessel dilation, and excessive ECM deposition.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
Type 1 diabetes (T1D) is an autoimmune disease that is caused by autoreactive T cell-mediated destruction of insulin-producing β cells in the pancreatic islets. Although naive autoreactive T cells are initially primed by islet antigens in pancreas-draining lymph nodes (pan-LNs), the adhesion molecules that recruit T cells into pan-LNs are unknown. We show that high endothelial venules in pan-LNs of young nonobese diabetic mice have a unique adhesion molecule profile that includes strong expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!