Our previous study estimated the bias from the match attributes of the auditory and visual modalities related to a peaceful mood in the male brain. However, the interactions among the four main frequency bands of neural activity remain unknown. Therefore, this study uses magnetoencephalography to explore gender differences in the perceptions of auditory and visual modalities related to peaceful and fearful moods. Instead of analyzing single frequencies, this study analyzes interactions between low-frequency phase and high-frequency amplitude to reflect neural communication. The top four values in each of the 10 brain regions were averaged to give a representative value for further analysis with repeated-measures ANOVA. The results from the cross-frequency analyses suggest that delta-theta, delta-alpha, delta-beta, and delta-gamma couplings are associated with interactions between emotion and modality; theta-alpha, theta-beta, and theta-gamma couplings are associated with interactions between gender and emotion/time; alpha-beta and alpha-gamma couplings are associated with time; and beta-gamma coupling is associated with interactions between gender and modality. Although no obvious hemispheric lateralization of emotion in the macroscopic neural activity was found, these results reveal that males have stronger couplings (e.g., beta-gamma coupling) in the visual modality related to peaceful mood, whereas females have stronger couplings (e.g., beta-gamma coupling) in the audiovisual modality related to fearful mood. Gender differences become much more apparent when analysis is based on cross-frequency coupling. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.23885 | DOI Listing |
Org Lett
January 2025
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology/Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China.
Objectives: To study the clinical manifestations and genetic characteristics of children with maturity-onset diabetes of the young type 2 (MODY2), aiming to enhance the recognition of MODY2 in clinical practice.
Methods: A retrospective analysis was conducted on the clinical data of 13 children diagnosed with MODY2 at the Department of Pediatrics of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from August 2017 to July 2023.
Results: All 13 MODY2 children had a positive family history of diabetes and were found to have mild fasting hyperglycemia [(6.
Acta Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!