In the sea urchin embryo, primary mesenchyme cells (PMCs) adhere to one another and fuse via filopodia, forming cable-like structures within which skeletal rods are deposited. Although this process was first described more than a century ago, molecules that participate in PMC adhesion and fusion have not been identified. Here we show that KirrelL, a PMC-specific, Ig domain-containing transmembrane protein, is essential for PMC fusion, probably by mediating filopodial adhesions that are a pre-requisite for subsequent membrane fusion. We show that KirrelL is not required for PMC specification, migration, or for direct filopodial contacts between PMCs. In the absence of KirrelL, however, filopodial contacts do not result in fusion. kirrelL is a member of a family of closely related, intronless genes that likely arose through an echinoid-specific gene expansion, possibly via retrotransposition. Our findings are significant in that they establish a direct linkage between the transcriptional network deployed in the PMC lineage and an effector molecule required for a critically important PMC morphogenetic process. In addition, our results point to a conserved role for Ig domain-containing adhesion proteins in facilitating cell fusion in both muscle and non-muscle cell lineages during animal development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2016.11.006DOI Listing

Publication Analysis

Top Keywords

kirrell member
8
adhesion proteins
8
primary mesenchyme
8
mesenchyme cells
8
sea urchin
8
urchin embryo
8
fusion kirrell
8
filopodial contacts
8
fusion
6
kirrell
5

Similar Publications

In the sea urchin embryo, primary mesenchyme cells (PMCs) adhere to one another and fuse via filopodia, forming cable-like structures within which skeletal rods are deposited. Although this process was first described more than a century ago, molecules that participate in PMC adhesion and fusion have not been identified. Here we show that KirrelL, a PMC-specific, Ig domain-containing transmembrane protein, is essential for PMC fusion, probably by mediating filopodial adhesions that are a pre-requisite for subsequent membrane fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!