The ever-increasing consumption of various cytostatic drugs (CSDs) has attracted growing public concern in recent years. The photodegradation of 8 CSDs was investigated using a low-pressure UV-254Hg lamp, resulting in fluence-based first-order kinetic rate constants in the range of (0.20-6.97)×10cmmJ. The influence of water matrix components, including natural dissolved organic matter (DOM), bicarbonate (HCO), nitrate (NO), chloride (Cl), and sulfate (SO), was investigated. The degradation rates of CSDs decrease in the presence of DOM due to the competition for the UV light, but increase with addition of NO due to an indirect production of HO. Further investigation was carried out to evaluate the viability of UV treatment performances using two real water samples, namely treated water from a water treatment plant and secondary effluent from a wastewater treatment plant. The primary photodegradation byproducts of CSDs were identified using LC/MS/MS to investigate the mechanism of direct UV photolysis and indirect NO-induced and DOM-induced photolysis. The degradation rates of CSDs increase significantly with the addition of HO or SO under UV irradiation, due to the generation of non-selective HO or selective SO. As an electrophilic radical, SO mainly reacts via electron transfer and selectively attacks certain electron-donating functional groups of CSDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2016.11.016 | DOI Listing |
Eur J Pharm Sci
December 2024
Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany.
Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Changes to the composition of the microbiome in neoplasia, is termed oncobiosis, may affect tumor behavior through the changes to the secretion of bacterial metabolites. In this study we show, that ursodeoxycholic acid (UDCA), a bacterial metabolite, has cytostatic properties in pancreatic adenocarcinoma cell (PDAC) models. UDCA in concentrations corresponding to the human serum reference range suppressed PDAC cell proliferation.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Department of Chemistry, PDEA's Baburaoji Gholap College, Sangvi, Pune 27, India. Electronic address:
The current comprehensive study showcases a meticulous synthesis of novel class of α-benzilmonoxime thiocarbohydrazide (BMOTC) derivatives, and manifesting their multifaceted potential as antibacterial, antifungal, and anticancer agents. The synthesis of target compounds was performed in three phases using literature methods. In the first step, benzilmonoxime is synthesized using benzil and hydroxyl amine hydrochloride, followed by benzilmonoxime imine using thiocarbohydrazide.
View Article and Find Full Text PDFBMC Cancer
December 2024
CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
Background: The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!