A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Analysis of Gene Regulatory Network Components in the Auditory Hindbrain of Mice and Chicken. | LitMetric

Comparative Analysis of Gene Regulatory Network Components in the Auditory Hindbrain of Mice and Chicken.

Brain Behav Evol

Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.

Published: July 2017

The neurons in the mammalian and avian auditory hindbrain nuclei share a number of significant morphological and physiological properties for fast, secure and precise neurotransmission, such as giant synapses, voltage-gated K+ channels and fast AMPA receptors. Based on the independent evolution of the middle ear in these two vertebrate lineages, on different embryonic origins of the nuclei and on marked differences on the circuit level, these similarities are assumed to reflect convergent evolution. Independent acquisition of similar phenotypes can be produced by divergent evolution of genetic mechanisms or by similar molecular mechanisms. The distinction between these two possibilities requires knowledge of the gene regulatory networks (GRNs) that orchestrate the development of auditory hindbrain structures. We therefore compared the expression pattern of GRN components, both transcription factors (TFs) and noncoding RNA, during terminal differentiation of the auditory hindbrain structures in mouse and chicken when neurons acquire their final morphological and electrophysiological properties. In general, we observed broad expression of these genes in the mouse auditory cochlear nucleus complex and the superior olivary complex at both postnatal day 4 (P4) and at P25, and for the chicken at the equivalent developmental stages, i.e. embryonic day 13 (E13) and at P14-P17. Our data are in agreement with a model based on similar molecular mechanisms underlying terminal differentiation and maintenance of neuronal cell identity in the auditory hindbrain of different vertebrate lineages. This conservation might reflect developmental constraints arising from the tagmatic organization of rhombomeres and the evolutionarily highly conserved GRNs operating in these structures.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000449447DOI Listing

Publication Analysis

Top Keywords

auditory hindbrain
20
gene regulatory
8
chicken neurons
8
vertebrate lineages
8
molecular mechanisms
8
hindbrain structures
8
terminal differentiation
8
auditory
6
hindbrain
5
comparative analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!