Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since nitrate causes severe ecological and health risks, nitrate contamination of drinking water sources has become one of the most important water quality concerns all over the world. Photocatalytic reduction of nitrate to molecular nitrogen presents a promising approach to remove nitrate from drinking water sources. However, harmful intermediates like NO, NO, NO and NO are usually formed, and metal loading or hole scavengers are generally needed to reduce the recombination of photo-generated electrons and holes, which will cause secondary pollution to drinking water. In this work, an efficient, selective and sustainable bioelectro-photocatalytic nitrate-reducing system by utilizing commercial TiO nanoparticles P25 as the photocatalyst and bio-electrons from microbial metabolism as the hole scavenger is reported. In this system, bio-electrons extracted from organic substrates in bioanode are transferred to the photocathode through an external circuit for hole quenching. With the utilization of the residual photogenerated electrons, nitrate is completely reduced to nitrogen without accumulation of harmful nitrite or ammonium. The experimental results and the mechanistic analysis using the first-principles density functional theory calculations demonstrate that toxic by-products like nitrite or ammonium will not be accumulated in this system. Thus, this approach has a great potential for sustainable remediation of nitrate-contaminated drinking water sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2016.11.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!