Cardiotoxicity induced by chemotherapeutic agents and radiotherapy is a growing problem. In recent years, an increasing number of new drugs with targeted action have been designed. These molecules, such as monoclonal antibodies and tyrosine kinase inhibitors, can cause different type of toxicities compared to traditional chemotherapy. However, they can also cause cardiac complications such as heart failure, arterial hypertension, QT interval prolongation and arrhythmias. Currently, a field of intense research is the vascular toxicity induced by new biologic drugs, particularly those which inhibit vascular endothelial growth factor (VEGF) and its receptor (VEGF-R) and other tyrosine kinases. In this review, we aim at focusing on the problem of vascular toxicity induced by new targeted therapies, chemotherapy and radiotherapy, and describe the main mechanisms and emphasizing the importance of early diagnosis of vascular damage, in order to prevent clinical complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2016.11.174DOI Listing

Publication Analysis

Top Keywords

vascular toxicity
12
toxicity induced
8
vascular
5
anticancer therapy-induced
4
therapy-induced vascular
4
toxicity vegf
4
vegf inhibition
4
inhibition cardiotoxicity
4
cardiotoxicity induced
4
induced chemotherapeutic
4

Similar Publications

Advances in the detection and treatment of cancer have translated into improved cancer survival rates and a growing population of cancer survivors. These include those living with cancer and individuals free of the disease following treatment. Epidemiological studies demonstrate that cancer survivors are at an increased risk of cardiovascular disease (CVD), with cardiovascular (CV) mortality overtaking cancer mortality in some tumour types.

View Article and Find Full Text PDF

Systematically generating differential diagnoses facilitates a clinician's history, physical exam, and clinical evaluation. is an acronym for pathophysiologies to consider in a differential diagnosis: immune reactions and dysregulation, metabolic, psychiatric, allergic, structural, social, infectious, vascular, endocrine/exocrine, degenerative, iatrogenic, congenital, traumatic, autoimmune, toxic, idiopathic, neoplastic, and genetic. We suggest that this mnemonic includes several improvements on previous pathophysiology-based acronyms and have informally validated this new mnemonic with two lists of common diseases.

View Article and Find Full Text PDF

The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) combined with anti-vascular endothelial growth factor (VEGF) have been the standard first-line treatment of hepatocellular carcinoma (HCC). However, the efficacy of this combination in post-line treatment is still unknown. This study aimed to evaluate the efficacy and safety of the combination of anti-PD-L1 envafolimab and novel humanized anti-VEGF suvemcitug as second-line treatment for patients with HCC.

View Article and Find Full Text PDF

Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!