G protein-coupled receptors (GPCRs) constitute a large protein family of seven transmembrane (7TM) spanning proteins that regulate multiple physiological functions. GPR87 is overexpressed in several cancers and plays a role in tumor cell survival. Here, the basal activity of GPR87 was investigated in transiently transfected HEK293 cells, revealing ligand-independent coupling to Gα, Gα and Gα. Furthermore, GPR87 showed a ligand-independent G protein-dependent activation of the downstream transcription factors CREB, NFκB, NFAT and SRE. In tetracycline-induced Flp-In T-Rex-293 cells, GPR87 induced cell clustering presumably through Gα coupling. In a foci formation assay using retrovirally transduced NIH3T3 cells, GPR87 showed a strong in vitro transforming potential, which correlated to the in vivo tumor induction in nude mice. Importantly, we demonstrate that the transforming potential of GPR87 was correlated to the receptor signaling, as the signaling-impaired mutant R139A (Arg in the conserved "DRY"-motif at the bottom of transmembrane helix 3 of GPR87 substituted to Ala) showed a lower in vitro cell transformation potential. Furthermore, R139A lost the ability to induce cell clustering. In summary, we show that GPR87 is active through several signaling pathways and that the signaling activity is linked to the receptor-induced cell transformation and clustering. The robust surface expression of GPR87 and general high druggability of GPCRs make GPR87 an attractive future anticancer target for drugs that - through inhibition of the receptor signaling - will inhibit its transforming properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2016.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!