Background: Preservation of pancreatic beta cell function has been increasingly appealing in the treatment of type 2 diabetes. Evidence is still limited on how bariatric surgery affects pancreatic beta cell apoptosis.

Setting: University medical center.

Objective: The study aimed to investigate the effect of a major component of Roux-en-Y gastric bypass, duodenal-jejunal bypass, on protecting pancreatic beta cells from progressive loss.

Methods: Forty-five normal Sprague-Dawley rats were randomly assigned into 3 groups: duodenal-jejunal bypass (DJB) group (n = 16) and sham (S) group (n = 17), based upon the procedure received, and a control (C) group (n = 12) without any procedure performed, to eliminate potential traumatic effects from surgery. Ten days after surgery, streptozotocin (STZ, 45 mg/kg weight) was injected intraperitoneally into each animal, including the control animals, to selectively induce pancreatic beta cell apoptosis. Weight, food intake, plasma glucose level, and the results of an oral glucose tolerance test were measured before surgery, pre-STZ injection, and up to 4 weeks after STZ injection. Plasma insulin and glucagon-like peptide-1 levels were also assayed during oral glucose tolerance test. At the end, pancreatic tissues were sliced and stained for beta cell analysis.

Results: There were no significant differences in weight among all groups at any time points measured, despite rats in the S and C groups consuming more food than those in the DJB group as measured on day 10 (P<.05) and day 20 (P<.01) after STZ injection. Animals undergoing DJB did not experience symptoms typical of uncompensated diabetes, including hyperphagia and progressive weight loss. After STZ injection, fasting plasma glucose levels in the DJB group were significantly lower than those in the C and S groups (P<.001). When challenged by glucose load, DJB rats also had a better glycemic excursion (P<.01) and incretin response compared with C and S rats (P<.05). In addition, pancreatic beta cell size and mass was better preserved in DJB rats (P< .001).

Conclusion: DJB is able to protect pancreatic beta cells from apoptosis, which leads to better glycemic control and delayed onset of diabetes. These results imply the necessity of including a DJB component when designing bariatric procedure to achieve a better long-term outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.soard.2016.08.500DOI Listing

Publication Analysis

Top Keywords

pancreatic beta
16
beta cell
16
duodenal-jejunal bypass
12
djb group
8
oral glucose
8
glucose tolerance
8
tolerance test
8
pancreatic
6
beta
5
bypass attenuates
4

Similar Publications

Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.

Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).

View Article and Find Full Text PDF

Background: Reduced insulin secretion is linked to diabetes and cardiovascular disease (CVD), but its role in non-diabetic CVD patients is unclear. The homeostasis model assessment of β-cell function (HOMA-β) measures pancreatic β-cell function. This study investigated the association between HOMA-β and adverse cardiovascular events in non-diabetic CVD patients.

View Article and Find Full Text PDF

Risk Factors and Mechanisms for Diabetes in Pancreatitis.

Gastroenterol Clin North Am

March 2025

Department of Pediatrics, University of Minnesota, MMC 391, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:

Diabetes (DM) can occur as a complication of acute, acute recurrent, or chronic pancreatitis, affecting more than 30% of adults with chronic pancreatitis. Data on the pathophysiology and management are limited, especially in pediatric population. Proposed mechanisms include insulin deficiency, insulin resistance, decreased pancreatic polypeptide, and possible beta-cell autoimmunity (in a small subset).

View Article and Find Full Text PDF

miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states.

Biochem Biophys Res Commun

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:

The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.

View Article and Find Full Text PDF

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. The roles of the transcription factor special AT-rich binding protein-2 (SATB2) and β-catenin in PDAC have been a subject of controversy. We aimed to assess the diagnostic and prognostic impact of SATB2 and β-catenin in PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!