Aim: Uncertainty about the safety of cell therapy continues to be a major challenge to the medical community. Inflammation and the associated immune response represent a major safety concern hampering the development of long-term clinical therapy. In vivo interactions between the cell graft and the host immune system are mediated by functional environmental sensors and stressors that play significant roles in the immunobiology of the graft. Within this context, human liver stellate cells (HSC) demonstrated marked immunological plasticity that has main importance for future liver cell therapy application.
Methods: By using qPCR technique, we established the cytokine gene expression profile of HSCs and investigated the effect of an inflammatory environment on the immunobiology of HSCs.
Results And Discussion: HSCs present a specific immunological profile as demonstrated by the expression and modulation of major immunological cytokines. Under constitutive conditions, the cytokine pattern expressed by HSCs was characterized by the high expression of IL-6. Inflammation critically modulated the expression of major immunological cytokines. As evidenced by the induction of the expression of several inflammatory genes, HSCs acquire a pro-inflammatory profile that ultimately might have critical implications for their immunological shape.
Conclusion: These new observations have to be taken into account in any future liver cell therapy application based on the use of HSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2016.11.008 | DOI Listing |
J Orthop Surg Res
January 2025
Guizhou Medical University, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou, People's Republic of China.
Background: Wound repair methods are commonly used in clinical practice, such as skin graft and flap repair, which can cause secondary injuries, and high costs. Many methods for skin stretching and repair have been reported domestically and internationally. However, their clinical use is limited owing to lack of equipment, complexity, and high costs.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.
Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.
J Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Oncology, The First People's Hospital of Yibin, No.65, Wenxing Street, Cuiping District, Yibin, 644000, China.
Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!