Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O-benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.11.018 | DOI Listing |
Bioconjug Chem
January 2025
Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany.
Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
February 2024
All-Russian Research Institute of Agricultural Biotechnology, Moscow, Russia.
Study of RNA-protein interactions and identification of RNA targets are among the key aspects of understanding RNA biology. Currently, various methods are available to investigate these interactions with, RNA immunoprecipitation (RIP) being the most common. The search for RNA targets has largely been conducted using antibodies to an endogenous protein or to GFP-tag directly.
View Article and Find Full Text PDFMethods Cell Biol
February 2024
Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France. Electronic address:
In the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant.
View Article and Find Full Text PDFCell Mol Biol Lett
July 2023
VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
Background: The dynamics of phosphatidylserine in the plasma membrane is a tightly regulated feature of eukaryotic cells. Phosphatidylserine (PS) is found preferentially in the inner leaflet of the plasma membrane. Disruption of this asymmetry leads to the exposure of phosphatidylserine on the cell surface and is associated with cell death, synaptic pruning, blood clotting and other cellular processes.
View Article and Find Full Text PDFNanoscale Adv
July 2023
Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!