AI Article Synopsis

  • - The HSV-1 UL2 protein plays a key role in viral infection but its cellular location and transport mechanisms were previously unclear.
  • - Researchers used fluorescent microscopy to observe that the UL2 protein accumulates in the nucleus of live cells without needing other HSV-1 proteins present.
  • - The study identified that multiple cellular transport pathways, involving several transport receptors, assist in the nuclear transport of UL2, enhancing our understanding of its role in HSV-1 infection.

Article Abstract

As a crucial protein, the herpes simplex virus 1 (HSV-1) UL2 protein has been shown to take part in various stages of viral infection, nonetheless, its exact subcellular localization and transport molecular determinants are not well known thus far. In the present study, by using live cells fluorescent microscopy assay, UL2 tagged with enhanced yellow fluorescent protein was transiently expressed in live cells and showed a completely nuclear accumulation without the presence of other HSV-1 proteins. Moreover, the nuclear transport of UL2 was characterized to be assisted by multiple transport pathways through Ran-, importin α1-, α5-, α7-, β1- and transportin-1 cellular transport receptors. Consequently, these results will improve understanding of UL2-mediated biological functions in HSV-1 infection cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2016-0268DOI Listing

Publication Analysis

Top Keywords

subcellular localization
8
herpes simplex
8
simplex virus
8
live cells
8
characterization subcellular
4
localization nuclear
4
nuclear import
4
import molecular
4
molecular mechanisms
4
mechanisms herpes
4

Similar Publications

Single-organelle visualization tracking natural glycosaminoglycans within mitochondria-lysosome crosstalk for inflammatory homeostasis.

Int J Biol Macromol

January 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).

View Article and Find Full Text PDF

The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons.

J Biol Chem

January 2025

Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:

The Shab family voltage-gated K channels (i.e., Kv2.

View Article and Find Full Text PDF

Localized K63 ubiquitin signaling is regulated by VCP/p97 during oxidative stress.

Mol Cell Proteomics

January 2025

Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.

View Article and Find Full Text PDF

ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!