Myelin Genes and the Corpus Callosum: Proteolipid Protein 1 (PLP1) and Contactin 1 (CNTN1) Gene Variation Modulates Interhemispheric Integration.

Mol Neurobiol

Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069, Dresden, Germany.

Published: December 2017

Interhemispheric communication during demanding cognitive tasks shows pronounced interindividual variation. Differences in interhemispheric transfer time are constituted by the relative composition of slow and fast fibers. The speed of axonal conduction depends on the diameter of the axon and its myelination. To understand the possible genetic impact of myelin genes on performance in the Banich-Belger Task, a widely used paradigm to assess interhemispheric integration, 453 healthy adults were genotyped for 18 single nucleotide polymorphisms (SNPs) in six myelin-related candidate genes. We replicated the typical pattern of results in the Banich-Belger Task, supporting the idea that performance on cognitively demanding tasks is enhanced when cognitive processing is distributed across the two hemispheres. Moreover, allelic variations in the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1 correlated with the extent to which individual performance is enhanced by interhemispheric integration. Variation in myelin genes possibly affects the microstructure of the corpus callosum by altering oligodendrocyte structure. Therefore, these results provide a foundation for understanding how genetics plays a role in modulating the efficacy of transcallosal transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-0285-5DOI Listing

Publication Analysis

Top Keywords

myelin genes
12
interhemispheric integration
12
corpus callosum
8
proteolipid protein
8
plp1 contactin
8
banich-belger task
8
interhemispheric
5
genes corpus
4
callosum proteolipid
4
protein plp1
4

Similar Publications

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Co-methylation networks associated with cognition and structural brain development during adolescence.

Front Genet

January 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States.

Introduction: Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance.

Methods: To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA).

View Article and Find Full Text PDF

Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

Neuroinformatics

January 2025

Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!