Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-016-0240-4 | DOI Listing |
J Dev Biol
December 2024
Department of Neuroscience, Biomedicine and Movement-Sec. Anatomy and Histology, University of Verona, Via Le Grazie 8, 37134 Verona, Italy.
Since its first conceptualization over a century ago, the mesenchymal phenotype has traditionally been viewed as either a transient phase between successive epithelial stages or as a feature of cell types primarily devoted to structural support. However, recent findings in cancer research challenge this limited view, demonstrating that mesenchymal traits and hybrid mesenchymal/epithelial states can mark cancer cells with stem cell properties. By analyzing publicly available single-cell transcriptome datasets from early embryonic stages and adult tissues, this study aims to extend this concept beyond pathological contexts, suggesting that a partial or fully mesenchymal phenotype may represent the morphological expression of undifferentiated and multipotent states in both the developing embryo and adult organs.
View Article and Find Full Text PDFOral Dis
January 2025
Bahrain Defence Force Royal Medical Services, Riffa, Bahrain.
Objective: Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Stem Cells Regen Med
October 2024
Mansoura University, Faculty of Science, Zoology department, Mansoura, Dakahlia, Egypt.
In recent years, bone marrow derived mesenchymal stem cells (BM-derived MSCs) have emerged as a powerful cell-based therapy for various diseases, including male infertility. Demonstrating the efficiency of BM-derived MSCs transplantation by different routes of injection to home and repair testis of busulfan-induced azoospermic rats. In the present study, rat BM-derived MSC was isolated and characterized for mesenchymal &hematopoietic markers using flow-cytometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!