Intracerebral hemorrhage (ICH) represents the deadliest subtype of all strokes. The development of brain edema, a consequence of blood-brain barrier (BBB) disruption, is the most life-threatening event after ICH. Pathophysiological conditions activate the endothelium, one of the components of BBB, inducing rearrangement of the actin cytoskeleton. Upon activation, globular actin assembles into a filamentous actin resulting in the formation of contractile actin bundles, stress fibers. The contraction of stress fibers leads to the formation of intercellular gaps between endothelial cells increasing the permeability of BBB. In the present study, we investigated the effect of ICH on stress fiber formation in CD1 mice. We hypothesized that ICH-induced formation of stress fiber is triggered by the activation of PDGFR-β and mediated by the cortactin/RhoA/LIMK pathway. We demonstrated that ICH induces formation of stress fibers. Furthermore, we demonstrated that the inhibition of PDGFR-β and its downstream reduced the number of stress fibers, preserving BBB and resulting in the amelioration of brain edema and improvement of neurological functions in mice after ICH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757435PMC
http://dx.doi.org/10.1177/0271678X16679169DOI Listing

Publication Analysis

Top Keywords

stress fibers
16
stress fiber
12
fiber formation
8
blood-brain barrier
8
intracerebral hemorrhage
8
brain edema
8
formation stress
8
formation
6
stress
6
ich
5

Similar Publications

Parametric finite element modeling of reinforced polymeric leaflets for improved durability.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, 80523, CO, USA. Electronic address:

Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent in vivo anti-calcific, anti-thrombotic, and in vitro hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement.

View Article and Find Full Text PDF

Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci

December 2024

Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.

This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.

View Article and Find Full Text PDF

Effect of Chemical Treatment on the Mechanical and Hygroscopic Properties of an Innovative Clay-Sand Composite Reinforced with Fibers.

Materials (Basel)

January 2025

Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.

The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.

View Article and Find Full Text PDF

The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).

View Article and Find Full Text PDF

Development and Characterization of Biodegradable, Binderless Fiberboards from Eggplant Straw Fibers.

Materials (Basel)

December 2024

International Joint Research Center on High-Value Utilization of Agricultural Waste Biomass Between Jiangsu University, China, and Mie University, Japan, Zhenjiang 212013, China.

Currently, wood-based panels are mainly made from wood and adhesives containing formaldehyde. With the growing demand for raw materials and increasing concern for human health, the use of residues from annual crops to manufacture binder-free biodegradable biomass boards has attracted increasing interest. The aim of this study was to develop a biodegradable bio-board without any adhesives using eggplant straw fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!