Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons.

J Neuroinflammation

Laboratory of Stem Cells and Neural Repair, Inbiomed, Paseo Mikeletegi, 81, E-20009, San Sebastian, Spain.

Published: November 2016

Background: Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both familial and idiopathic forms of Parkinson's disease (PD). Neuroinflammation is a key event in neurodegeneration and aging, and there is mounting evidence of LRRK2 involvement in inflammatory pathways. In a previous study, we described an alteration of the inflammatory response in dermal fibroblasts from PD patients expressing the G2019S and R1441G mutations in LRRK2.

Methods: Taking advantage of cellular reprogramming, we generated induced pluripotent stem cell (iPSC) lines and neurons thereafter, harboring LRRK2 and LRRK2 mutations. We used gene silencing and functional reporter assays to characterize the effect of the mutations. We examined the temporal profile of TNFα-induced changes in proteins of the NF-κB pathway and optimized western blot analysis to capture α-synuclein dynamics. The effects of the mutations and interventions were analyzed by two-way ANOVA tests with respect to corresponding controls.

Results: LRRK2 silencing decreased α-synuclein protein levels in mutated neurons and modified NF-κB transcriptional targets, such as PTGS2 (COX-2) and TNFAIP3 (A20). We next tested whether NF-κB and α-synuclein pathways converged and found that TNFα modulated α-synuclein levels, although we could not detect an effect of LRRK2 mutations, partly because of the individual variability. Nevertheless, we confirmed NF-κB dysregulation in mutated neurons, as shown by a protracted recovery of IκBα and a clear impairment in p65 nuclear translocation in the LRRK2 mutants.

Conclusions: Altogether, our results show that LRRK2 mutations affect α-synuclein regulation and impair NF-κB canonical signaling in iPSC-derived neurons. TNFα modulated α-synuclein proteostasis but was not modified by the LRRK2 mutations in this paradigm. These results strengthen the link between LRRK2 and the innate immunity system underscoring the involvement of inflammatory pathways in the neurodegenerative process in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116223PMC
http://dx.doi.org/10.1186/s12974-016-0761-xDOI Listing

Publication Analysis

Top Keywords

lrrk2 mutations
16
lrrk2
10
mutations
9
impair nf-κb
8
nf-κb pathway
8
ipsc-derived neurons
8
involvement inflammatory
8
inflammatory pathways
8
mutated neurons
8
tnfα modulated
8

Similar Publications

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 () are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.

View Article and Find Full Text PDF
Article Synopsis
  • This review focuses on genetic mutations in kinases related to Parkinson's Disease and analyzes both existing treatments and potential new therapeutic targets.
  • The study highlights four key kinases—PINK1, LRRK2, GAK, and PRKRA—emphasizing that LRRK2 has the most marketed inhibitors, while PINK1, GAK, and PRKRA remain largely unexplored.
  • It calls for increased research on these underinvestigated kinases to develop new therapies that could improve treatment options and address the progression of Parkinson's Disease.
View Article and Find Full Text PDF

Loss of LRRK2 activity induces cytoskeleton defects and oxidative stress during porcine oocyte maturation.

Cell Commun Signal

January 2025

Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.

View Article and Find Full Text PDF

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!