Background: Glioma stem-like cells (GSCs) are proposed to be responsible for high resistance in glioblastoma multiforme (GBM) treatment. In order to find new strategies aimed at reducing GSC stemness and improving GBM patient survival, we investigated the effects and mechanism of a histone deacetylases (HDACs) inhibitor, suberoylanilide hydroxamic acid (SAHA), since HDAC activity has been linked to cancer stem-like cell (CSC) abundance and properties.
Methods: Human GBM cell lines were plated in serum-free suspension cultures allowed for sphere forming and CSC enrichment. Subsequently, upon SAHA treatment, the stemness markers, cell proliferation, and viability of GSCs as well as cellular apoptosis and senescence were examined in order to clarify whether inhibition of GSCs occurs.
Results: We demonstrated that SAHA attenuated cell proliferation and diminished the expression stemness-related markers (CD133 and Bmi1) in GSCs. Furthermore, at high concentrations (more than 5 μM), SAHA triggered apoptosis of GSCs accompanied by increases in both activation of caspase 8- and caspase 9-mediated pathways. Interestingly, we found that a lower dose of SAHA (1 μM and 2.5 μM) inhibited GSCs via cell cycle arrest and induced premature senescence through p53 up-regulation and p38 activation.
Conclusion: SAHA induces apoptosis and functions as a potent modulator of senescence via the p38-p53 pathway in GSCs. Our results provide a perspective on targeting GSCs via SAHA treatment, and suggest that SAHA could be used as a potent agent to overcome drug resistance in GBM patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116136 | PMC |
http://dx.doi.org/10.1186/s12929-016-0296-6 | DOI Listing |
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan. Electronic address:
Objectives: Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release.
Methods: Ca9-22 cells were pretreated with curcumin before butyrate exposure.
Geroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFbioRxiv
January 2025
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States.
Organoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!