Objective: Exome sequences account for only 2% of the genome and may overlook mutations causing disease. To obtain a more complete view, whole genome sequencing (WGS) was analyzed in a large consanguineous family in which members displayed autosomal recessively inherited cerebellar ataxia manifesting before 2 years of age.

Methods: WGS from blood-derived genomic DNA was used for homozygosity mapping and a rare variant search. RNA from isolated blood leukocytes was used for quantitative polymerase chain reaction (PCR), RNA sequencing, and comparison of the transcriptomes of affected and unaffected family members.

Results: WGS revealed a point mutation in noncoding RNA RNU12 that was associated with early onset cerebellar ataxia. The U12-dependent minor spliceosome edits 879 known transcripts. Reverse transcriptase PCR demonstrated minor intron retention in all of 9 randomly selected RNAs from this group, and RNAseq showed splicing disruption specific to all U12-type introns detected in blood monocytes from affected individuals. Moreover, 144 minor intron-containing RNAs were differentially expressed, including transcripts for 3 genes previously associated with cerebellar neurodegeneration.

Interpretation: Interference with particular spliceosome components, including small nuclear RNAs, cause reproducible uniquely distributed phenotypic and transcript-specific effects, making this an important category of disease-associated mutation. Our approach to differential expression analysis of minor intron-containing genes is applicable to other diseases involving altered transcriptome processing. ANN NEUROL 2017;81:68-78.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.24826DOI Listing

Publication Analysis

Top Keywords

cerebellar ataxia
12
mutation noncoding
8
noncoding rna
8
rna rnu12
8
early onset
8
onset cerebellar
8
minor intron-containing
8
rna
4
rnu12 early
4
cerebellar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!