Unlabelled: Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH.

Conclusion: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396354PMC
http://dx.doi.org/10.1002/hep.28953DOI Listing

Publication Analysis

Top Keywords

nonalcoholic fatty
12
fatty liver
12
lipid zonation
8
liver disease
8
distribution lipids
8
lipids liver
8
spatial distribution
8
membrane release
8
liver
5
lipids
5

Similar Publications

Cholesterol ester storage disease (CESD) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the LIPA gene, leading to reduced lysosomal acid lipase activity, cholesterol ester accumulation, and systemic manifestations including liver dysfunction and dyslipidemia. We report the case of a 25-year-old male presenting with subacute jaundice, hyperbilirubinemia (total bilirubin 51 mg/dL, predominantly direct), and dyslipidemia characterized by elevated total cholesterol and low HDL cholesterol levels. Initial diagnostic workup for acute hepatitis and liver dysfunction, including serological and imaging studies, was unremarkable.

View Article and Find Full Text PDF

Preparation of protein and its preventive effect on nonalcoholic fatty liver disease in mice.

Food Funct

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China.

is a valuable edible fungus with multidimensional bioactivities; however, research on protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are highly prevalent diseases that constitute enormous public health problems. The efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitors in blood glucose control in T2DM patients with NAFLD has been established, but little is known about its effect on liver enzyme levels.

Objective: This meta-analysis aimed to evaluate the influences of DPP-4 inhibitors on alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2DM and NAFLD.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is considered one of the most common metabolic disorders worldwide. Although the pathoetiology of NAFLD is not fully elucidated, recent evidence suggests the involvement of stress, inflammation, and programmed death in the onset and progression of the disease. This investigation aimed to evaluate the effects of ellagic acid (EA), a known herbal antioxidant, on a high-fat diet (HFD)-induced animal model of NAFLD by evaluating the status of lipid profile, necroptosis (RIPK1, RIPK3, and MLKL), autophagy (LC3, ATG5, and BECN1), inflammation (TNF-α, IL-6, IL-4, and IL-10), and stress (SOD, CAT, GR, GPx, and MDA).

View Article and Find Full Text PDF

Aim: Attenuated insulin-sensitivity (IS) is a characteristic of type 2 diabetes (T2D) and is closely linked to non-alcoholic fatty liver disease (NAFLD). In recent years, many surrogate markers of IS have emerged to predict NAFLD. A natural log transformation of the glucose disposal rate (log GDR) has been proposed as a new model for IS in patients with T2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!