Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells.

Cell

Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge CB1 8RN, UK. Electronic address:

Published: November 2016

AI Article Synopsis

  • The study investigates how genetic and epigenetic factors influence disease traits in human immune cells by profiling three major cell types from nearly 200 individuals.
  • Researchers quantitatively analyze the contributions of these factors to gene transcription, identifying potential confounding influences in epigenome-wide association studies.
  • The findings reveal coordinated genetic effects on gene expression and highlight 345 immune disease loci, providing insights into the relationship between genomic elements and disease risk.

Article Abstract

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14 monocytes, CD16 neutrophils, and naive CD4 T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119954PMC
http://dx.doi.org/10.1016/j.cell.2016.10.026DOI Listing

Publication Analysis

Top Keywords

human immune
8
genetic epigenetic
8
epigenetic factors
8
genetic
4
genetic drivers
4
epigenetic
4
drivers epigenetic
4
epigenetic transcriptional
4
transcriptional variation
4
variation human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!