Pembrolizumab, a potent antibody against programmed death 1 (PD-1) receptor, has shown robust antitumor activity and manageable safety in patients with advanced solid tumors. Its pharmacokinetic (PK) properties were analyzed with population PK modeling using pooled data from the KEYNOTE-001, -002, and -006 studies of patients with advanced melanoma, non-small cell lung cancer (NSCLC), and other solid tumor types. Pembrolizumab clearance was low and the volume of distribution small, as is typical for therapeutic antibodies. Identified effects of sex, baseline Eastern Cooperative Oncology Group performance status, measures of renal and hepatic function, tumor type and burden, and prior ipilimumab treatment on pembrolizumab exposure were modest and lacked clinical significance. Furthermore, simulations demonstrated the model has robust power to detect clinically relevant covariate effects on clearance. These results support the use of the approved pembrolizumab dose of 2 mg/kg every 3 weeks without dose adjustment in a variety of patient subpopulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270291 | PMC |
http://dx.doi.org/10.1002/psp4.12139 | DOI Listing |
Small
January 2025
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China.
The ancient proverb "disease enters through the mouth" elucidates the connection between food and pathogens, underscoring the pivotal role of food preservation in preventing foodborne diseases. Drawing inspiration from ancient food preservation techniques such as waxing and the use of spices, a novel approach combining the deprotonation-induced solid-liquid phase separation of natural polymer solutions with the solubilization of plant-derived antibacterial compounds has been developed. The "two-step soaking" construction strategy enables the creation of biodegradable and adaptable for hydrogel coatings with micro-scale thickness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, State Key Laboratory of Fire Science, CHINA.
Lithium metal batteries have garnered significant attention as promising energy storage solutions. However, their performance is often compromised by the risks associated with highly active metallic lithium, unrestricted electrode expansion, and excessive dendrites growth. Here we introduce an advanced lithiophilic anode substrate designed by chemically patterning technology for multiple security enhancements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Central China Normal University, College of Chemistry, Luoyu Road 152, 430079, Wuhan, CHINA.
Constructing oriented crystalline covalent organic framework (COF) membranes with controllable thickness for water purification is highly desirable. Herein, we present a simple and universal protocol to prepare high-quality COF membranes on the inner wall of a glass vessel using a diffusion/modulator dual-mediated solid-liquid/vapor interfacial synthesis strategy. By meticulous control of the solvent and temperature, a thin supersaturated spreading liquid layer was formed on the glass wall surface and served as a confined microreactor for incubating crystal nuclei.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
The approaches to design and control intermolecular interactions for a selective enhancement of specific process(es) are of high interest in technologies using molecular materials. Here, we describe how π-π stacking enables control over the heavy-atom effect and spin-orbit coupling (SOC) through dimerization of an organic emitter in solid media. π-π interactions in a red thermally activated delayed fluorescence (TADF) emitter afford specific types of dimers.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
The battery market is primarily dominated by lithium technology, which faces severe challenges because of the low abundance and high cost of lithium metal. In this regard, multivalent metal-ion batteries (MVIBs) enabled by multivalent metal ions ( Zn, Mg, Ca, Al, ) have received great attention as an alternative to traditional lithium-ion batteries (Li-ion batteries) due to the high abundance and low cost of multivalent metals, high safety and higher volumetric capacities. However, the successful application of these battery chemistries requires careful control over electrode and electrolyte chemistries due to the higher charge density and slower kinetics of multivalent metal ions, structural instability of the electrode materials, and interfacial resistance, This review comprehensively explores the recent advancements in electrode and electrolyte materials as well as separators for MVIBs, highlighting the potential of MVIBs to outperform Li-ion batteries regarding cost, energy density and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!