Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21 . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21 pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345631 | PMC |
http://dx.doi.org/10.1111/jcmm.13015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!