Selected reaction monitoring mass spectrometry (SRM-MS) is a sensitive and accurate method for the quantification of targeted proteins in biological specimens. However, the sample throughput and reliability of this technique is limited by the complexity of sample preparation, as well as instrumentation and data processing. Modern robotic equipment allows for rapid and accurate processing of large number of samples and makes SRM-MS assay applicable in epidemiological studies. Herein, we describe an automated sample processing platform developed in the context of an SRM-MS protocol for the assay of complement factor H protein and its variants in human plasma. We report detailed performance data on plasma digestion, sample cleanup and optimized robotic handling implemented on a Biomek NX Workstation. Method validation was assessed with isotopically labeled peptide standards and had high reproducibility of intra-day assay (CVs from 2.7 to 17.5% with median CV of 5.3%) and inter-day assay (CVs from 4.8 to 17.6 with median CV of 7.2%) for all peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534325PMC
http://dx.doi.org/10.1002/pmic.201600339DOI Listing

Publication Analysis

Top Keywords

selected reaction
8
reaction monitoring
8
assay cvs
8
robotic protocol
4
protocol high-throughput
4
processing
4
high-throughput processing
4
processing samples
4
samples selected
4
monitoring assays
4

Similar Publications

Drug-induced eosinophilic pneumonia (EP) is an uncommon adverse drug reaction. Many drugs have been reported to cause EP, the evidence mainly being in the form of case reports/case series. This study aims to conduct an exploratory analysis of the United States Food and Drug Administration adverse event reporting system (FAERS) database to identify previously unknown drugs that can cause EP and supplement the available evidence for known culprit drugs.

View Article and Find Full Text PDF

Objectives: To investigate how studies determine the sample size when developing radiomics prediction models for binary outcomes, and whether the sample size meets the estimates obtained by using established criteria.

Methods: We identified radiomics studies that were published from 01 January 2023 to 31 December 2023 in seven leading peer-reviewed radiological journals. We reviewed the sample size justification methods, and actual sample size used.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health.

View Article and Find Full Text PDF

The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!