A mild and metal-free approach to C-N coupling is described that employs diaryliodonium salt electrophiles and secondary aliphatic amine nucleophiles. This reaction results in direct ipso-substitution of the iodonium moiety and unsymmetrical aryl(TMP)iodonium salts are primarily employed. Moreover, arene substituents and substitution patterns that currently pose a challenge to classical metal-free methods are accommodated and the alicyclic amine nucleophiles used here are unprecedented in other contemporary metal-free C-N coupling reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201610086 | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, Rabindranath Tagore University, Hojai 782435, Assam, India.
The synthesis of triazoles plays an important role in drug discovery research. 1,2,4-triazoles are considered significant scaffolds among several bioactive heterocycles due to their extensive use in the pharmaceutical and agrochemical sectors. Consequently, the importance of the synthesis of 1,2,4-triazoles a sustainable method has increased.
View Article and Find Full Text PDFACS Catal
January 2025
Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg 93040, Germany.
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.
View Article and Find Full Text PDFOrg Lett
January 2025
Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
Developed Co-MgO/TiO was applicable to C-N bond formation by direct amination of primary and secondary alcohols with NH via a borrowing hydrogen protocol. Selective synthesis of primary, secondary, and tertiary amines was achieved by controlling the reaction conditions. Asymmetric secondary amines can be synthesized by the coupling of alcohols and amines.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Electrocatalytic urea synthesis from CO and nitrate holds immense promise as a sustainable strategy, but its complicated synthesis steps and controversial C-N coupling mechanism restrict the design of efficient catalysts. Atomically precise metal cluster materials are ideal model catalysts for investigating the C-N coupling issues. Here we synthesize two atomically precise bimetallic clusters, AgPd(PTFE)(TPP) and AgAu(PTFE)(DPPP), both with icosahedral cores and similar ligands.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Zhongguancun North First St, 100190, Beijing, CHINA.
The photoelectrochemical (PEC) urea oxidation reaction (UOR) presents a promising half-reaction for green hydrogen production, but the stable resonance structure of the urea molecule results in sluggish kinetics for breaking the C-N bond. Herein, we realize the record PEC UOR performance on a NiO-modified n-Si photoanode (NiO@Ni/n-Si) by harnessing the adsorbate-adsorbate interaction. We quantificationally unveil a dependence of the UOR activation barrier on the coverage of photogenerated surface high-valent Ni-oxo species (NiIV=O) by employing operando PEC spectroscopic measurements and theoretical simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!