Due to its aggressive nature, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and hard-to-treat malignancies. Recently developed targeted molecular strategies have contributed to remarkable improvements in the treatment of several cancers. However, such therapies have not been applied to PDAC. Therefore, new treatment options are needed for PDAC based on current genomic approaches. Expression of microRNA-375 (miR-375) was significantly reduced in miRNA expression signatures of several types of cancers, including PDAC. The aim of the present study was to investigate the functional roles of miR-375 in PDAC cells and to identify miR-375-regulated molecular networks involved in PDAC aggressiveness. The expression levels of miR-375 were markedly downregulated in PDAC clinical specimens and cell lines (PANC-1 and SW1990). Ectopic expression of miR-375 significantly suppressed cancer cell proliferation, migration and invasion. Our in silico and gene expression analyses and luciferase reporter assay showed that zinc finger protein 36 ring finger protein-like 2 (ZFP36L2) was a direct target of miR-375 in PDAC cells. Silencing ZFP36L2 inhibited cancer cell aggressiveness in PDAC cell lines, and overexpression of ZFP36L2 was confirmed in PDAC clinical specimens. Interestingly, Kaplan-Meier survival curves showed that high expression of ZFP36L2 predicted shorter survival in patients with PDAC. Moreover, we investigated the downstream molecular networks of the miR-375/ZFP36L2 axis in PDAC cells. Elucidation of tumor-suppressive miR-375-mediated PDAC molecular networks may provide new insights into the potential mechanisms of PDAC pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5276842PMC
http://dx.doi.org/10.1111/cas.13119DOI Listing

Publication Analysis

Top Keywords

pdac
14
cancer cell
12
pdac cells
12
molecular networks
12
cell aggressiveness
8
pancreatic ductal
8
ductal adenocarcinoma
8
mir-375 pdac
8
pdac clinical
8
clinical specimens
8

Similar Publications

The presence of an aberrant right hepatic artery (a-RHA) could influence the oncological and postoperative outcomes after pancreaticoduodenectomy (PD). A comparative study was conducted, including patients who underwent PD with a-RHA or with normal RHA anatomy. The primary endpoints were R1 resection in all margins (pancreatic, anterior, posterior, superior mesenteric artery, and portal groove), overall survival (OS), and disease-free survival (DFS).

View Article and Find Full Text PDF

Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis.

Cell Rep Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. The roles of the transcription factor special AT-rich binding protein-2 (SATB2) and β-catenin in PDAC have been a subject of controversy. We aimed to assess the diagnostic and prognostic impact of SATB2 and β-catenin in PDAC.

View Article and Find Full Text PDF

Design, Structure Optimization, and Preclinical Characterization of JAB-21822, a Covalent Inhibitor of KRAS.

J Med Chem

January 2025

Chief executive officer, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China.

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutation is commonly found in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). Inhibitors that covalently modify the mutated codon 12 cysteine have completed proof-of-concept studies in the clinic. Here, we describe structure-based design and cocrystal-aided drug optimization of a series of compounds with the 1,8-naphthyridine-3-carbonitrile scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!