The modulation of H O production by NADPH oxidase (Nox), on vascular endothelial growth factor (VEGF) stimulation, affects the redox signaling linked to cancer cell proliferation. H O signal transduction involves reversible oxidation of thiol proteins, leading to the formation of cysteine sulfenic acids, responsible for the temporary inactivation of many phosphatases. These events imply that H O reaches its intracellular targets. As Aquaporin-8 (AQP8) has been demonstrated to funnel Nox-produced H O across the plasma membrane, this study aims to elucidate the role of AQP8 in the redox signaling occurring in human leukaemia B1647 cells that constitutively produce VEGF. AQP8 overexpression or silencing resulted in the modulation of VEGF ability of increasing or decreasing, respectively, H O intracellular level. Moreover, data obtained by a dimedone-based immunochemical method for sulfenic acid detection demonstrate that the expression of AQP8 can modulate the amplitude of downstream events, altering the activity of redox-sensitive targets. In particular, AQP8 affected VEGF-induced redox signaling by increasing the sulfenation of the tumor suppressor PTEN, which resulted in its inactivation and, in turn, caused Akt activation. Therefore, the dimedone-based method for easily monitoring cellular protein sulfenation allowed to demonstrate, for the first time, the role of AQP8 on the fine tune of cysteine oxidation in target proteins involved in leukaemia cell proliferation pathways. © 2016 BioFactors, 43(2):232-242, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.1340 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.
View Article and Find Full Text PDFNutrients
January 2025
Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA.
Background: Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT).
Methods: In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups.
Molecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!