Human anti-pig NK cell and CD8 T-cell responses in the presence of regulatory dendritic cells.

Xenotransplantation

Laboratory of Transplantation Immunology, Division of Immunology and Allergology, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.

Published: November 2016

Background: Dendritic cells (DC) play a major role in natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activation leading to cell-mediated xenogeneic responses. In contrast, the use of in vitro differentiated regulatory DC may represent an attractive approach to protect porcine endothelial cells (pEC) from human cell-mediated immune responses. In this study, we evaluated the potential of human regulatory DC to reduce xenogeneic NK cell and CTL responses to pEC.

Methods: Human monocytes were differentiated into DC with GM-CSF and IL-4 in the absence or presence of rapamycin or IL-10. The effect of regulatory DC on xenogeneic NK cell and CTL responses was evaluated by analyzing phenotype, IFNγ production, degranulation, and cytotoxicity by flow cytometry and cytotoxicity assays.

Results: Upon maturation with LPS, Rapa-DC and IL-10-DC displayed different phenotypes and cytokine production profiles. In contrast to untreated DC, both Rapa-DC and IL-10-DC induced significantly less IFNγ production and NK cell degranulation in response to pEC, but did not affect NK cell-mediated pEC lysis. Low production of IL-18 by Rapa-DC, and of IL-12 by IL-10-DC were linked to the deficient IFNγ production by NK cells as shown by partial reversion of IFNγ production upon cytokine reconstitution. In contrast to untreated DC efficiently generating xenoantigen-specific CTL, priming of CTL in the presence of IL-10-DC was impaired as shown by lower IFNγ production and cytotoxicity of CTL in response to pEC.

Conclusion: Both Rapa-DC and IL-10-DC controlled human anti-porcine NK cell responses, in particular IFNγ production, whereas IL-10-DC presented stronger regulatory properties of anti-porcine CTL responses. These in vitro findings indicate that regulatory DC could be a useful tool to promote xenograft tolerance in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1111/xen.12279DOI Listing

Publication Analysis

Top Keywords

ifnγ production
24
ctl responses
12
rapa-dc il-10-dc
12
dendritic cells
8
xenogeneic cell
8
cell ctl
8
production
8
contrast untreated
8
responses
7
ctl
7

Similar Publications

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Efficacy of silver nanoparticles (NPs) and fungal elicitors on the curcuminoid production in Curcuma longa L.

Plant Physiol Biochem

January 2025

Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.

View Article and Find Full Text PDF

Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy.

Plant Physiol Biochem

December 2024

College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:

Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.

View Article and Find Full Text PDF

2-Amino-3-methylimidazole [4,5-] quinoline (IQ) is a kind of heterocyclic amine (HCAs) with high carcinogenicity in hot processed meat. Rutin (Ru) is a flavonoid compound with anti-inflammatory and antioxidant properties. However, whether Ru is scatheless under IQ-stimulated potential unhealthy conditions, especially liver function, in vivo, is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!