Objective: Maternal vitamin D deficiency during pregnancy has been linked to impaired neurocognitive development in childhood. The mechanism by which vitamin D affects childhood neurocognition is unclear but may be via interactions with serotonin, a neurotransmitter involved in foetal brain development. In this study, we aimed to explore associations between maternal and foetal vitamin D concentrations, and foetal serotonin concentrations at term.
Study Design And Measurements: Serum 25-hydroxyvitamin D (25(OH)D, nmol/l) and serotonin (5-HT, nmol/l) concentrations were measured in maternal and umbilical cord blood from mother-infant pairs (n = 64). Association between maternal 25(OH)D, cord 25(OH)D and cord serotonin was explored using linear regression, before and after adjusting for maternal serotonin levels. We also assessed the effects of siRNA knockdown of the vitamin D receptor (VDR) and administration of 10 nm 1,25-dihydroxyvitamin D on serotonin secretion in human umbilical vein endothelial cells (HUVECs) in vitro.
Results: We observed an inverse relationship between both maternal and cord 25(OH)D concentrations with cord serotonin concentrations. The treatment of HUVECs with 1,25-dihydroxyvitamin D in vitro decreased the release of serotonin (193·9 ±14·8 nmol/l vs 458·9 ± 317·5 nmol/l, control, P < 0·05). Conversely, inactivation of VDR increased serotonin release in cultured HUVECs.
Conclusions: These observations provide the first evidence of an inverse relationship between maternal 25(OH)D and foetal serotonin concentrations. We propose that maternal vitamin D deficiency increases foetal serotonin concentrations and thereby contributes to longer-term neurocognitive impairment in infants and children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cen.13281 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, hence, fetal serotonin levels and thus may disturb fetal brain development. We investigated the effect of prenatal stress of varying intensities on the formation of adaptive behaviors in mouse offspring and the role of placental serotonin in these processes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia.
Placental serotonin is recognized as a key component of feto-placental physiology and can be influenced by environmental factors such as maternal diet, drugs, stress, and immune activation. In this study, we compared the contribution of placental and fetal sources to the maintenance of serotonin levels required for normal fetal development during ontogenetic dynamics. Our results demonstrated the leading role of the placenta at almost all stages of development.
View Article and Find Full Text PDFInt J Popul Data Sci
December 2024
School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada.
Introduction: Up to 30% of newborns with in-utero selective serotonin reuptake inhibitor (SSRI) exposure experience withdrawal symptoms. The impact of newborn feeding method on alleviating withdrawal has not been investigated. We examined the effect of newborn feeding method (breastfeeding versus formula) among a cohort of nates ith n-utero SRI xposure (NeoWISE).
View Article and Find Full Text PDFNeurotoxicology
December 2024
Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India. Electronic address:
The high prevalence of major depressive disorder (MDD) among women of childbearing age necessitates careful consideration of antidepressant use during pregnancy. Although newer antidepressants, such as Vilazodone (VLZ), are preferred for their enhanced therapeutic profiles; however, their safety during pregnancy and long-term effects on offspring brains remain inadequately addressed. Therefore, this study aimed to investigate the reproductive and developmental neurotoxicity of VLZ given at equivalent therapeutic doses during gestation in a rat model.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!