Background: Hyperimmunoglobulins are frequently applied for prophylaxis and treatment of human cytomegalovirus (HCMV) infections but were only marginally effective in meta-analyses of clinical studies. This might be partially due to selection of donors rather for total anti-HCMV titers than for neutralizing capacities. To improve efficacy against HCMV infection, we aimed at developing a high-throughput screening method for identification of blood donors with highly and broadly neutralizing capacities.

Study Design And Methods: Using a Gaussia luciferase-expressing reporter virus, 1000 HCMV immunoglobulin (Ig)G-positive plasma samples with known anti-HCMV immunoglobulin titers were analyzed regarding their neutralization titers against fibroblast and endothelial cell infection. Based on these results, a high-throughput screening was designed. Highly neutralizing plasma samples were further tested 1) by an enzyme-linked immunosorbent assay-based neutralization assay regarding efficiency against different HCMV strains and 2) for their efficiency compared to commercially available hyperimmunoglobulins.

Results: Total anti-HCMV immunoglobulin titers did not correlate with neutralization. Mean neutralization capacities were 15-fold higher in endothelial cells compared to fibroblasts. All plasma samples neutralizing fibroblast infection were at least equally effective against infection of endothelial cells, providing the possibility to simplify our screening method by testing only fibroblasts as target cells with a plasma dilution of 1 in 400. Of the nine tested top HCMV neutralizers, four were broadly effective against different HCMV strains. All nine were significantly superior to hyperimmunoglobulins.

Conclusion: Donors with highly and broadly neutralizing capacities can be identified by a two-step high-throughput screening approach. This may provide a basis for improved antibody-based treatment or prophylaxis of HCMV infections.

Download full-text PDF

Source
http://dx.doi.org/10.1111/trf.13906DOI Listing

Publication Analysis

Top Keywords

donors highly
12
highly broadly
12
broadly neutralizing
12
neutralizing capacities
12
high-throughput screening
12
plasma samples
12
screening approach
8
identification blood
8
blood donors
8
human cytomegalovirus
8

Similar Publications

A novel Sai-based antioxidant agent attenuates antibody-mediated rejection in allogeneic rat kidney transplantation.

Am J Transplant

January 2025

Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. Electronic address:

Antibody-mediated rejection (ABMR) remains a leading cause of graft loss during kidney transplantation. Ischemia reperfusion injury (IRI) has been reported to promote T-cell proliferation, leading to B-cell activation and subsequent production of donor-specific antibodies (DSA), which target antigens on the vascular endothelium. We hypothesize that a novel therapeutic strategy targeting highly toxic reactive oxygen species could mitigate oxidative stress and immune responses associated with IRI.

View Article and Find Full Text PDF

Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.

View Article and Find Full Text PDF

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

A dihydrochalcone-specific O-methyltransferase from leaf buds of Populus trichocarpa implicated in bud resin formation.

J Exp Bot

January 2025

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.

Production of secreted leaf bud resin is a mechanism for temperate trees to protect dormant leaf buds against frost damage, dehydration, and insect herbivory. Bud resins contain a wide variety of special metabolites including terpenoids, benzenoids, and phenolics. The leaf bud resins of Populus trichocarpa and P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!