The forkhead box P1 (FOXP1) transcription factor has been shown to regulate the generation and maintenance of quiescent naïve murine T cells. In humans, FOXP1 expression has been correlated with overall survival in patients with peripheral T-cell lymphoma (PTCL), although its regulatory role in T-cell function is currently unknown. We found that FOXP1 is normally expressed in all human leukocyte subpopulations. Focusing on primary human CD4 T cells, we show that nuclear expression of FOXP1 predominates in naïve cells with significant downregulation detected in memory cells from blood and tonsils. FOXP1 is repressed following in vitro T-cell activation of naïve T cells, and later re-established in memory CD4 T cells, albeit at lower levels. DNA methylation analysis revealed that epigenetic mechanisms participate in regulating the human FOXP1 gene. ShRNA-mediated FOXP1 repression induces CD4 T cells to enter the cell cycle, acquire memory-like markers and upregulate helper T-cell differentiation genes. In patients with lymphoproliferative disorders, FOXP1 expression is constitutionally repressed in the clonal T cells in parallel with overexpression of helper T-cell differentiation genes. Collectively, these data identify FOXP1 as an essential transcriptional regulator for primary human CD4 T cells and suggest its potential important role in the development of PTCL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201646373DOI Listing

Publication Analysis

Top Keywords

cd4 cells
20
human cd4
12
cells
11
foxp1
10
patients lymphoproliferative
8
lymphoproliferative disorders
8
foxp1 expression
8
primary human
8
naïve cells
8
helper t-cell
8

Similar Publications

Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.

View Article and Find Full Text PDF

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

The collective detrimental impact of aged naive lymphocytes and thymus atrophy on the aging of the immune system can be mitigated by exercise. Hence, this research aims to explore the effects of three methods of water-based exercises on immune system aging and thymus atrophy in elderly rats. Thirty-two 24-month-old rats, with an average weight of 320 ± 5 g, were randomly allocated into four groups of endurance training (n = 8), resistance training (n = 8), combined training (n = 8), and control (n = 8).

View Article and Find Full Text PDF

Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4 T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis.

View Article and Find Full Text PDF

Generation of Human Chimeric Antigen Receptor Regulatory T Cells.

J Vis Exp

January 2025

Department of Microbiology and Immunology, Medical University of South Carolina; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina;

Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!