The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower longevity along the altitudinal gradient is less common for potential flower longevity than for open-pollination flower longevity. Independently of any selection that may occur on potential longevity, plastic responses of flowers to environmental conditions are likely to contribute to altitudinal variation in flower longevity, especially in dry alpine areas. Such plastic responses could push flowers of alpine species towards shorter life-lengths under climate change, with uncertain consequences for successful pollination and plant fitness in a warming world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115873 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166350 | PLOS |
J Exp Bot
December 2024
Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China.
Premature petal senescence dramatically reduces flower quality and value. Ethylene and reactive oxygen species (ROS) are key players in accelerating rose petal senescence, but the molecular mechanism by which ethylene antagonizes ROS scavenging is not well understood. Here, we show that ethylene reduces ascorbic acid (AsA) production, leading to the accumulation of ROS and hastening petal senescence.
View Article and Find Full Text PDFNeotrop Entomol
December 2024
Programa de Pós-Graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
Plant Physiol Biochem
December 2024
Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India. Electronic address:
The mutants resistant to ethylene are helpful in deciphering the role of ethylene in plant development. We isolated an ethylene-resistant tomato (Solanum lycopersicum) mutant by screening for acetylene-resistant (atr-1) seedlings. The atr-1 mutant displayed resistance to kinetin, suggesting attenuation of the ethylene sensing response.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Faculty of Agriculture, New Valley University, New Valley Governorate72511, Kharga City, Egypt.
Application of melatonin and lipopeptides (LPs) derived from Bacillus strains is considered an efficient strategy to control plant diseases at both pre and postharvest stages. However, the combined application of melatonin and LPs has not been studied yet. Therefore, the present study presents the synergistic effect of melatonin and LPs produced by Bacillus atrophaeus strain MCM61 against gray mold disease and its impact on quality parameters and vase life of cut roses.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany.
For successful cross-pollination, most flowering plants rely on insects as pollinators and attract them by offering rewards, predominantly nectar and pollen. Bees-a highly important pollinator group-are especially dependent on pollen as their main source of essential nutrients, including proteins, lipids, and sterols. Fatty acids (FAs) in particular play a pivotal role as fundamental energy source, contributing to membrane structure integrity, cellular homeostasis, and cognitive processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!