An ultra-high speed photonic sintering method consisting of flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiations was developed to fabricate a SrTiO (STO) thin film for application in electro-vibration touch panels. The STO thin film was sintered on PEN by FWL irradiation at room temperature under ambient conditions, which is a dramatically simple and ultrahigh speed fabrication process compared to the conventional high temperature (600 °C-900 °C) thermal sintering process. The effects of the FWL irradiation conditions (energy density, pulse numbers, and pulse duration) on the dielectric constant of the sintered STO thin films were evaluated. Furthermore, the effects of NIR and deep UV irradiation during the FWL sintering process were also investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/50/505209DOI Listing

Publication Analysis

Top Keywords

thin film
12
sto thin
12
photonic sintering
8
flash white
8
white light
8
nir deep
8
fwl irradiation
8
sintering process
8
sintering flash
4
light combined
4

Similar Publications

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Layer-by-layer thin films of TiC MXene and gold nanoparticles as an ideal SERS platform.

Phys Chem Chem Phys

January 2025

Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.

The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).

View Article and Find Full Text PDF

Metallic vanadium is innovatively introduced for a superior aqueous zinc-ion battery cathode material, which is activated through dissolution-deposition transition to amorphous VO·3HO and delivers an excellent capacity of 610 mA h g at 0.1 A g and remarkable capacity retention rate of 80.3% after 1000 cycles at 1 A g.

View Article and Find Full Text PDF

The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!