An abnormal N-heterocyclic carbene (aNHC) based homogeneous catalyst has been used for the reduction of carbon dioxide to methoxyborane in the presence of a range of hydroboranes under ambient conditions and resulted in the highest turnover number of 6000. A catalytically active reaction intermediate, [aNHC-H⋅9BBN(OCOH) ] was structurally characterized and authenticated by NMR spectroscopy. A detailed mechanistic cycle of this catalytic process via borondiformate formation has been proposed from tandem experimental and computational experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201609040 | DOI Listing |
Environ Health
December 2024
Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.
Background: Ambient air pollution is a known risk factor for several chronic health conditions, including pulmonary dysfunction. In recent years, studies have shown a positive association between exposure to air pollutants and the incidence, morbidity, and mortality of a COVID-19 infection, however the time period for which air pollution exposure is most relevant for the COVID-19 outcome is still not defined. The aim of this study was to analyze the difference in association when varying the time period of air pollution exposure considered on COVID-19 infection within the same cohort during the first wave of the pandemic in 2020.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.
The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Geological Sciences, Pusan National University, Busan 46241, Korea.
Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.
View Article and Find Full Text PDFJ Appl Lab Med
December 2024
Department of Clinical Oncology, Broomfield Hospital, Mid & South Essex NHS Foundation Trust, Chelmsford, Essex, United Kingdom.
Background: There is growing interest in the use of capillary blood sampling (CBS) for testing biochemical analytes owing to the advantages it offers including home surveillance of chronic conditions. In this study, we aimed to determine whether the use of CBS was a viable and feasible method for testing total prostate-specific antigen (TPSA) concentrations in men with prostate disease.
Methods: Men with known prostate disease were recruited from a urology clinic where they were being treated or followed up.
Human mesenchymal stromal cells (MSCs) are attractive for both medical practice and biomedical research. Nonfreezing short-term storage may provide safe and simple transportation and promote the practical use of MSCs. We aimed to determine the duration of efficient storage at ambient temperature (22°C) of human dermal MSCs in different three-dimensional organization and to investigate the role of cell metabolic mode in the resistance to the ambient storage damaging factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!