Aims: This study focused on comparing the phylogenetic composition and functional potential of the intestinal microbiome of rainbow trout sourced from both farm and aquarium settings.
Methods And Results: Samples of distal intestinal contents were collected from fish and subjected to high throughput 16S rRNA sequencing, to accurately determine the composition of the intestinal microbiome. The predominant phyla identified from both groups were Tenericutes, Firmicutes, Proteobacteria, Spirochaetae and Bacteroidetes. A novel metagenomic tool, PICRUSt, was used to determine the functional potential of the bacterial communities present in the rainbow trout intestine. Pathways concerning membrane transport activity were dominant in the intestinal microbiome of all fish samples. Furthermore, this analysis revealed that gene pathways relating to metabolism, and in particular amino acid and carbohydrate metabolism, were upregulated in the rainbow trout intestinal microbiome.
Conclusions: The results suggest that the structure of the intestinal microbiome in farmed rainbow trout may be similar regardless of where the fish are located and hence could be shaped by host factors. Differences were, however, noted in the microbial community membership within the intestine of both fish populations, suggesting that more sporadic taxa could be unique to each environment and may have the ability to colonize the rainbow trout gastrointestinal tract. Finally, the functional analysis provides evidence that the microbiome of rainbow trout contains genes that could contribute to the metabolism of dietary ingredients and therefore may actively influence the digestive process in these fish.
Significance And Impact Of The Study: To better understand and exploit the intestinal microbiome and its impact on fish health, it is vital to determine its structure, diversity and potential functional capacity. This study improves our knowledge of these areas and suggests that the intestinal microbiome of rainbow trout may play an important role in the digestive physiology of these fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.13347 | DOI Listing |
Toxicol Sci
January 2025
U.S. EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
6PPD-quinone (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone), a transformation product of the antiozonant 6PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine) is a likely causative agent of coho salmon (Oncorhynchus kisutch) pre-spawn mortality. Stormwater runoff transports 6PPD-quinone into freshwater streams, rapidly leading to neurobehavioral, respiratory distress, and rapid mortality in laboratory exposed coho salmon, but causing no mortality in many laboratory-tested species. Given this identified hazard, and potential for environmental exposure, we evaluated a set of U.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by has occurred. This study aims to understand the pathogenic characteristics of and provide scientific basis for the prevention and control of the epidemic.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen in the salmonid aquaculture industry and leads to economic losses in the world. This study aimed to develop a new oral DNA vaccine designed to protect rainbow trout against infection by IHNV. Fish were administered via the oral route by the attenuated Salmonella enterica serovar Typhimurium as a carrier of pcDNA3.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea. Electronic address:
Single-cycle viruses hold great promise as fish viral vaccines due to their high protective efficacy. Although the efficacy of the vaccine in olive flounder and rainbow trout has been proven through previous research, safety must be additionally proven considering the environment of use for commercialization. This study comprehensively assesses the safety of rVHSV-GΔTM and its impact on both the host and the surrounding environment, including the coastal habitat of nearby species and seawater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!