The development of locomotor kinetics in the foal and the effect of osteochondrosis.

Equine Vet J

Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.

Published: July 2017

Reason For Performing Study: Foals stand and walk immediately after birth, but insight into the subsequent longitudinal development of their gait kinetics in the early juvenile phase and the possible influence of osteochondrosis thereon is lacking.

Objectives: To quantify gait kinetics in foals during the first half year of life, taking into account their osteochondrosis status.

Study Design: Prospective, cohort study performed at a single stud farm.

Methods: Pressure plate measurements at walk and trot from 11 Dutch Warmblood foals during the first 24 weeks of life were used to determine body mass normalised peak vertical force, normalised vertical impulse and stance duration. Coefficients of variation of peak vertical force and stance duration were used as measures for gait maturity. Radiographs of tarsocrural and femoropatellar joints were taken at age 4-6 weeks and after 6 months to check for osteochondrosis. A linear mixed model was used to determine the effects of age, limb, presence of osteochondrosis and speed on gait parameters.

Results: Mean walking and trotting velocity increased over time as did stance duration and normalised vertical impulse, normalised peak vertical force values however remained relatively constant. During the first weeks of their life only the coefficient of variation of stance duration decreased significantly, while the coefficient of variation of peak vertical force did not. None of the foals was visibly lame, but the presence of osteochondrosis resulted in a temporarily but significantly reduced normalised peak vertical force.

Main Limitations: This study is a relatively small sample size of one breed from a single stud farm. A stand-alone pressure plate was used and body mass was estimated rather than measured.

Conclusions: Despite being precocious, foals need time to mature their gait. During growth, velocity at walk and trot increases, but normalised peak vertical force remains relatively constant. Although not visibly lame, a temporary reduction in normalised peak vertical force was detected in osteochondrosis positive foals using a pressure plate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484372PMC
http://dx.doi.org/10.1111/evj.12649DOI Listing

Publication Analysis

Top Keywords

peak vertical
28
vertical force
24
normalised peak
20
stance duration
16
pressure plate
12
vertical
9
gait kinetics
8
single stud
8
walk trot
8
weeks life
8

Similar Publications

Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.

Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.

View Article and Find Full Text PDF

To compare the effectiveness of injury prevention programs (IPPs) for improving high-risk knee motion patterns in the context of reducing the risk of noncontact anterior cruciate ligament injury. Systematic review with Bayesian network meta-analysis. PubMed, Embase, Web of Science, Cochrane Library, and the Cumulative Index to Nursing and Allied Health Literature were searched until September 10, 2023.

View Article and Find Full Text PDF

High-Performance Proton Exchange Membrane with Vertically Aligned Montmorillonite Nanochannels.

Small

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.

The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.

View Article and Find Full Text PDF

Introduction: The aim of this study was to evaluate the effect of an Athletic Performance Program (APP), implemented as a complement to the usual training routines of a professional football team, on match performance variables in professional football players. The APP was designed to target mobility, stability, strength, multidirectional and sprint skills, which are critical for performance during competitive matches.

Methods: A prospective quasi-experimental study was conducted over three consecutive seasons.

View Article and Find Full Text PDF

Background: Asymmetric landing kinetics 6 months after anterior cruciate ligament reconstruction (ACLR) are associated with higher risk of second anterior cruciate ligament injury. Little is known about landing kinetics after ACLR with an all-soft tissue quadriceps tendon (QT) autograft despite its increasingly common use in young, active patients.

Purpose/hypothesis: The purpose of this study was to compare landing kinetics during a bilateral drop vertical jump (DVJ) 6 months after ACLR in participants who had undergone primary ACLR with a QT or bone-patellar tendon-bone (BTB) autograft.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!