Influenza virus infection triggers an increase in the number of monocyte-derived dendritic cells (moDCs) in the respiratory tract, but the role of these cells during antiviral immunity is still unclear. Here we show that during influenza infection, moDCs dominate the late activation of CD8 T cells and trigger the switch in immunodominance of the CD8 T-cell response from acidic polymerase specificity to nucleoprotein specificity. Abrogation of monocyte recruitment or depletion of moDCs strongly compromised host resistance to secondary influenza challenge. These findings underscore a novel function of moDCs in the antiviral response to influenza virus, and have important implications for vaccine design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324604PMC
http://dx.doi.org/10.1002/eji.201646523DOI Listing

Publication Analysis

Top Keywords

monocyte-derived dendritic
8
dendritic cells
8
secondary influenza
8
influenza challenge
8
cd8 t-cell
8
influenza virus
8
influenza
5
cells
4
cells enhance
4
enhance protection
4

Similar Publications

Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.

View Article and Find Full Text PDF

Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods.

Hepatol Commun

November 2024

Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.

Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.

Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.

View Article and Find Full Text PDF

Controlling vaccine kinetics using tannic acid for enhanced humoral immunity.

J Control Release

January 2025

John A Paulson School of Engineering & Applied Sciences, Allston, MA 02134, USA; Wyss Institute of Biologically Inspired Engineering, Boston, MA 02215, USA. Electronic address:

Despite the success of global vaccination campaigns, vaccine access in low-resource settings is an ongoing challenge. Subunit vaccines are a well-established and clinically scalable intervention, yet they have achieved limited success for poorly immunogenic antigens such as those associated with SARS-CoV-2. Delivery strategies that promote gradual release of subunit vaccines from the injection site offer the potential to improve humoral immunity by enhancing lymph node exposure, however, clinical implementation of this strategy is challenging due to poor scalability and high costs.

View Article and Find Full Text PDF

Carbohydrate-mediated interactions between chloroviruses and the immune system.

Commun Biol

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!