Irreversible acetylcholinesterase (AChE) inhibition accumulates to high levels in the central nervous system (CNS) because AChE turnover in the brain is much slower than in peripheral tissues. As expected from this CNS selectivity, the irreversible AChE inhibitor methanesulfonyl fluoride (MSF) produces significant cognitive improvement in Alzheimer's disease patients without the gastrointestinal toxicity that plagues other AChE inhibitors. However, without dose-limiting gastrointestinal toxicity, one shortcoming of the prior human studies of MSF is that the upper limits of CNS AChE inhibition that might be tolerated could not be tested. Therefore, in this study, monkeys were treated with escalating intramuscular (IM) doses of MSF that culminated with several weeks of 1.5 mg/kg dosing, more than eight times the prior human clinical dose, still without signs of toxicity. Brain biopsies showed that ∼80% AChE inhibition had been produced and that the new synthesis of cortical AChE had a half-time (t1/2) of ∼12 days. A single IM dose of 1.5 mg/kg MSF produced ∼59% inhibition in cerebrospinal fluid (CSF) AChE as measured one day later. This corresponds to a peak of ∼80% inhibition in CSF AChE at the time of the injection, recovering with a t1/2 of 2.4 days. Computational analyses suggest that MSF at clinically relevant doses could theoretically produce a steady-state AChE inhibition between 65% and 85% in the CNS. These data suggest that the full therapeutic advantage of AChE inhibition therapy can be realized without interference from dose-limiting gastrointestinal toxicity if an irreversible inhibitor is employed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148699PMC
http://dx.doi.org/10.3233/JAD-160733DOI Listing

Publication Analysis

Top Keywords

ache inhibition
20
gastrointestinal toxicity
12
ache
11
alzheimer's disease
8
inhibition
8
cns ache
8
dose-limiting gastrointestinal
8
prior human
8
csf ache
8
msf
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!