Preclinical imaging in oncology: advances and perspectives.

Q J Nucl Med Mol Imaging

Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy -

Published: March 2017

Preclinical imaging with radiolabeled probes became an integral part of the complex translational process that moves a newly developed compound from laboratory to clinical application. Imaging studies in animal tumor models may be undertaken to test a newly synthesized tracer, a newly developed drug or to interrogate, in the living organism, specific molecular and biological processes underlying tumor growth and progression. The aim of the present review is to outline the current knowledge and future perspectives of preclinical imaging in oncology by providing examples from recent literature. Among the biological processes and molecular targets that can be visualized with radiolabeled probes in animal tumor models, we focused on proliferation, expression of targets suitable for therapy, glycolytic phenotype, metastatic dissemination, tumor angiogenesis and survival. The major contribution of preclinical imaging emerging from these studies is the development and validation of imaging biomarkers that can be translated into the clinical context for patient selection and evaluation of tumor response to molecularly targeted agents.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S1824-4785.16.02949-6DOI Listing

Publication Analysis

Top Keywords

preclinical imaging
16
imaging oncology
8
perspectives preclinical
8
radiolabeled probes
8
newly developed
8
animal tumor
8
tumor models
8
biological processes
8
imaging
5
tumor
5

Similar Publications

The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications.

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

Predictive Value of Selected Plasma Biomarkers in the Assessment of the Occurrence and Severity of Coronary Artery Disease.

Int J Mol Sci

January 2025

Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland.

Despite significant advances in imaging modalities for diagnosing coronary artery disease (CAD), there remains a need for novel diagnostic approaches with high predictive values and fewer limitations. Circulating biomarkers, including cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8), cell adhesion molecules such as soluble vascular cell adhesion molecule-1 (sVCAM-1), peptides secreted by endothelial cells such as endothelin-1 (ET-1), and enzymes involved in extracellular matrix remodeling such as a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) offer a promising alternative. This study aimed to evaluate the correlation between the plasma levels of selected biomarkers and the presence and severity of CAD.

View Article and Find Full Text PDF

Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside.

Biomolecules

January 2025

Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA.

Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!