The bromodomain and extra-terminal proteins (BETs), in particular BRD4, has been reported to play important roles in cancer, inflammation, obesity, cardiovascular disease, and neurological disorders. In this paper, a series of benzomorpholinone derivatives were synthesized and biologically evaluated as BETs inhibitors. Detailed structure-activity relationship studies led to the discovery of several new potent compounds, of which 15h and 15i displayed [Formula: see text] values of 2.8 and 4.5 [Formula: see text] against BRD4 (D1), respectively, and showed good anti-proliferation activities against four hematologic malignancies cell lines at low-micromolar concentrations, including MV4-11, OCI-LY10, Pfeifer, and Su-DHL-6 cells. This chemotype could be further optimized with respect to its potency and drug-like properties in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-016-9707-6DOI Listing

Publication Analysis

Top Keywords

[formula text]
8
synthesis biological
4
biological evaluation
4
evaluation n-3-oxo-34-dihydro-2h-benzo[b][14]oxazin-7-ylbenzenesulfonamide
4
n-3-oxo-34-dihydro-2h-benzo[b][14]oxazin-7-ylbenzenesulfonamide derivatives
4
derivatives bet
4
bet bromodomain
4
bromodomain inhibitors
4
inhibitors anti-hematologic
4
anti-hematologic malignancies
4

Similar Publications

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Compartmental Models Driven by Renewal Processes: Survival Analysis and Applications to SVIS Epidemic Models.

Sci Rep

January 2025

Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 1120, 15th Street, Augusta, GA, 30912, USA.

Compartmental models with exponentially distributed lifetime stages assume a constant hazard rate, limiting their scope. This study develops a theoretical framework for systems with general lifetime distributions, modeled as transition rates in a renewal process. Applications are provided for the SVIS (Susceptible-Vaccinated-Infected-Susceptible) disease epidemic model to investigate the impacts of hazard rate functions (HRFs) on disease control.

View Article and Find Full Text PDF

Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.

View Article and Find Full Text PDF

In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetries cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to the bath renders the system short-range correlated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!