Some experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence for EPO treating cerebral ischemia/reperfusion injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090848 | PMC |
http://dx.doi.org/10.4103/1673-5374.191219 | DOI Listing |
Alzheimers Dement
December 2024
STEM Neurology & Neuropsychological0 Research Group Egypt (SNRGE), Port Said, Port Said, Egypt.
Background: The olfactory mucosa cells are capable of lifelong neurogenesis providing a viable source of progenitor cells. Olfactory mucosa progenitor cells (OMPCs) have alleviated several cerebral ischemia/reperfusion damage markers. OMPCs are safely obtainable from the upper nasal cavity.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China. Electronic address:
Environ Pollut
December 2024
Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
Front Neurol
December 2024
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
The innate immune response is the body's first line of defense against external pathogens and endogenous damage signals. The cGAS-STING pathway is a crucial component of the innate immune response, playing a key role in initiating antiviral and anti-infective immune responses by recognizing cytosolic DNA. Acute cerebral infarction is one of the leading causes of death and disability worldwide, with the primary treatment approach being the restoration of blood flow to ischemic brain tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!