Background And Aim: The aim of the study was to evaluate vitamin E effect upon oxidative stress associated with toluene -2, 4-diisocyanate (TDI)-induced asthma in rats.
Methods: The five study groups were: control, vehicle, TDI, vehicle+E, TDI+E. TDI animals were sensitized by nasal administration of TDI 10% (5μl/nostril) between days 1-7 and 15-21. Between days 22-28 groups TDI+E and vehicle+E rats received vitamin E (50 mg/kg, i. v.), and control, vehicle and TDI groups received saline solution. On day 29 the rats were challenged by intranasal application of 5% TDI (5 μl/nostril). On day 30 blood, BALF and lung biopsy were harvested. Oxidative stress tests were malondialdehyde (MDA), protein carbonyls (PC), total thiols (tSH), 1,1-diphenyl-2-picryl hydrazyl (DPPH) and reduced glutathione (GSH).
Results: TDI sensitization increased oxidative stress systemically, but also locally in the respiratory airways and lung tissue. There was an increase of MDA and PC formation associated with a deficiency of the antioxidant defense reflected by DPPH decreases. There were no differences between systemic and local lung concentrations of oxidized molecules. After vitamin E treatment oxidative stress was reduced mostly due to serum, BALF and lung tissue GSH and DPPH increase.
Conclusion: The study showed that in rat TDI-induced asthma there was oxidative stress caused by increased ROS production and antioxidants deficiency, and vitamin E reduced ROS production and improved antioxidant defense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111490 | PMC |
http://dx.doi.org/10.15386/cjmed-611 | DOI Listing |
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Geroscience
January 2025
Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!