We present a photon-counting double-random-phase encryption technique that only requires the photon-limited amplitude of the encrypted image for decryption. The double-random-phase encryption is used to encrypt an image, generating a complex image. Photon counting is applied to the amplitude of the encrypted image, generating a sparse noise-like image; however, the phase information is not retained. By not using the phase information, the encryption process is simplified, allowing for intensity detection and also less information to be recorded. Using a phase numerically generated from the correct encryption keys together with the photon-limited amplitude of the encrypted image, we are able to decrypt the image. Moreover, nonlinear correlation algorithms can be used to authenticate the decrypted image. Both amplitude-based and full-phase encryption using the proposed method are investigated. Preliminary computational results and performance evaluation are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.33.002158DOI Listing

Publication Analysis

Top Keywords

amplitude encrypted
16
encrypted image
16
double-random-phase encryption
12
image
10
photon counting
8
photon-limited amplitude
8
image generating
8
encryption
5
encryption photon
4
counting image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!