In this work, we investigate the nonreciprocal circular dichroism for terahertz (THz) waves in magnetized InSb by the theoretical calculation and numerical simulation, which indicates that longitudinally magnetized InSb can be applied to the circular polarizer and nonreciprocal one-way transmission for the circular polarization THz waves. Furthermore, we propose a double-layer magnetoplasmonics based on the longitudinally magnetized InSb, and find two MO enhancement mechanisms in this device: the magneto surface plasmon resonance on the InSb-metal surface and Fabry-Pérot resonances between two orthogonal metallic gratings. These two resonance mechanisms enlarge the MO polarization rotation and greatly reduce the external magnetic field below 0.1T. The one-way transmission and perfect linear polarization conversion can be realized over 70dB, of which the transmittance can be modulated from 0 to 80% when the weak magnetic field changes from 0 to 0.1T under the low temperature around 200K. This magnetoplasmonic device has broad potential as a THz isolator, modulator, polarization convertor, and filter in the THz application systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.026431DOI Listing

Publication Analysis

Top Keywords

magnetized insb
16
one-way transmission
12
thz waves
8
longitudinally magnetized
8
magnetic field
8
terahertz polarization
4
polarization converter
4
converter one-way
4
transmission based
4
based double-layer
4

Similar Publications

We present a magneto-optical Kerr effect (MOKE) spectrometer based on a modified Martin-Puplett interferometer, utilizing continuous wave sub-THz low-power radiation in a broad frequency range. This spectrometer is capable of measuring the frequency dependence of the MOKE response function, both the Kerr rotation and ellipticity, simultaneously, with accuracy limited by a sub-milliradian threshold, without the need for a reference measurement. The instrument's versatility allows it to be coupled to a cryostat with optical windows, enabling studies of a variety of quantum materials such as unconventional superconductors, two-dimensional electron gas systems, quantum magnets, and other systems showing optical Hall response at sub-Kelvin temperatures and in high magnetic fields.

View Article and Find Full Text PDF

The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core β-sheet.

View Article and Find Full Text PDF

Observation of Moment-Dependent and Field-Driven Unidirectional Magnetoresistance in CoFeB/InSb/CdTe Heterostructures.

ACS Appl Mater Interfaces

August 2024

School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.

Magnetoresistance effects are crucial for understanding the charge-spin transport as well as propelling the advancement of spintronic applications. Here, we report the coexistence of magnetic-moment-dependent (MD) and magnetic-field-driven (FD) unidirectional magnetoresistance (UMR) effects in CoFeB/InSb/CdTe heterostructures. The strong spin-orbital coupling of InSb and the matched impedance at the CoFeB/InSb interface warrant a distinct MD-UMR effect at room temperature, while the interaction between the in-plane magnetic field and the Rashba effect at the InSb/CdTe interface induces the marked FD-UMR signal that dominates the high-field region.

View Article and Find Full Text PDF

Tunable Near-Field Radiative Heat Transfer between Graphene-Coated Magneto-Optical Metasurfaces.

Langmuir

July 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

The highly structured design of metasurfaces greatly facilitates the manipulation of near-field radiative heat transfer (NFRHT). In this study, we incorporate magneto-optical materials into metasurfaces to theoretically explore the mechanism for controlling NFRHT between anisotropic magneto-optical metasurfaces. Our findings indicate that the interaction between the magnetization-induced modes, arising from interband transitions of graphene, and the surface modes of InSb under a magnetic field leads to a transition in the heat transfer spectrum from a dual band to a triple band.

View Article and Find Full Text PDF

Quantum transport in InSb quantum well devices: progress and perspective.

J Phys Condens Matter

June 2024

Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland.

InSb, a narrow-band III-V semiconductor, is known for its small bandgap, small electron effective mass, high electron mobility, large effective-factor, and strong spin-orbit interactions. These unique properties make InSb interesting for both industrial applications and quantum information processing. In this paper, we provide a review of recent progress in quantum transport research on InSb quantum well devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!