Optical multicasting that supports point-to-multipoint traffic replication can be one of the necessary techniques in next-generation all-optical elastic networks. In this paper, we propose an optical multicasting approach for polarization-division-multiplexing (PDM) orthogonal frequency division multiplexing (OFDM) signals based on a novel polarization-interleaved multi-pump (PIMP) four-wave mixing (FWM) scheme in highly nonlinear fiber (HNLF). Besides format transparency and the support of PDM signals, the scheme further enables wide spectral tunability of generated replicas. The pump frequency arrangement for the scheme is presented, which successfully prevents the replicas from being superimposed by unwanted FWM components during tuning. We experimentally demonstrate multicasting operation of a 3-band 100-Gb/s PDM-OFDM signal. With different input positions, 1.4 and 1.6 Terahertz tuning ranges of four replicas are achieved with Q-factor performance better than the forward error correction threshold. Tunable replica spacing from 100-GHz to 250-GHz are also verified. In addition, the scalability of the scheme is demonstrated via 5-pump multicasting, successfully generating a total of 14 replicas.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.026344DOI Listing

Publication Analysis

Top Keywords

optical multicasting
12
novel polarization-interleaved
8
polarization-interleaved multi-pump
8
fwm scheme
8
multicasting
5
scheme
5
tunable optical
4
multicasting pdm-ofdm
4
pdm-ofdm signals
4
signals novel
4

Similar Publications

We propose an all-fiber mode-selective power splitter (MSPS) for non-circular-symmetric LPlm (l = 1, 2, …) modes, which is suitable for multicasting and optical performance monitoring in mode-division multiplexing optical fiber networks. The MSPSs are asymmetric two-core few-mode directional couplers composed of a few-mode fiber and a two-mode fiber. We theoretically studied the three conditions required by the MSPSs.

View Article and Find Full Text PDF

Vortex beams carrying orbital angular momentum (OAM) provide a new degree of freedom for light waves in addition to the traditional degrees of freedom, such as intensity, phase, frequency, time, and polarization. Due to the theoretically unlimited orthogonal states, the physical dimension of OAM is capable of addressing the problem of low information capacity. With the advancement of the OAM optical communication technology, OAM router devices (OAM-RDs) have played a key role in significantly improving the flexibility and practicability of communication systems.

View Article and Find Full Text PDF

Optical multicasting, which involves delivering an input signal to multiple different channels simultaneously, is a key function to improve network performance. By exploiting individual spatial modes as independent channels, mode-division-multiplexing (MDM) can solve the capacity crunch of traditional standard single-mode fiber (SSMF) transmission system. In order to realize mode multicasting with high flexibility in future hybrid wavelength-division-multiplexing (WDM) and MDM networks, we propose a mode multicasting scheme without parasitic wavelength conversion, based on the inter-modal four-wave mixing (FWM) arising in the few-mode fiber (FMF).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers successfully demonstrate an optically-assisted method for averaging two 4-phase-encoded data streams at high rates of 10 and 20-Gbaud, resulting in a 7-phase-encoded output.
  • * The process involves three key stages: phase encoding with an optical modulator, summation using nonlinear fiber, and multicast through a lithium niobate waveguide, with the final output showing increased error vector magnitudes and optical signal-to-noise ratio penalties.
View Article and Find Full Text PDF

The physical dimension of orbital angular momentum (OAM) states of light has been successfully implemented as information carrier in wireless optical communication (WOC) links. However, the current OAM data coding strategies in WOC are mainly limited to the temporal domain, rarely involving the degree of freedom of spatial domain to transmit an image directly. Here, we apply OAM holographic multiplexing technology for spatial information encoding in WOC links.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!