We report a new type of plasmonic nanoscale ridge aperture and its fabrication process which is based on layer-by-layer planar lithography. This new fabrication method allows us to create desired nanoscale features of a plasmonic ridge waveguide nanoscale aperture, which helps to confine a near-field spot to sub-wavelength dimensions. Numerical simulations using Finite Element Method (FEM) are performed to calculate the near-field distribution around the exit of the aperture. Measurements using scattering near-field scanning optical microscopy (s-NSOM) confirm the design and demonstrate that the aperture is capable of producing focused spots in the ridge gap at the exit of the aperture. The planar lithography process is a step toward mass production of such plasmonic structures for applications including heat-assisted magnetic recording (HAMR).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.026016DOI Listing

Publication Analysis

Top Keywords

ridge waveguide
8
waveguide nanoscale
8
nanoscale aperture
8
planar lithography
8
exit aperture
8
aperture
6
subdiffraction light
4
light focusing
4
focusing cross
4
cross sectional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!