Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.025983DOI Listing

Publication Analysis

Top Keywords

coherent detection
12
pulse-compression lidar
12
ghost imaging
8
imaging lidar
8
lidar system
8
lidar
7
pulse-compression
5
detection
5
pulse-compression ghost
4
lidar coherent
4

Similar Publications

Predicting Plaque Regression Based on Plaque Characteristics Identified by Optical Coherence Tomography: A Retrospective Study.

Photodiagnosis Photodyn Ther

January 2025

Department of Cardiology, Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing 211166, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Background: Atherosclerosis is a lipid-driven, systemic immune-inflammatory disease characterized by the accumulation of plaque within the arterial walls. Plaque regression can occur following appropriate treatment interventions. Optical coherence tomography (OCT), a high-resolution imaging modality, is frequently employed to assess plaque morphology.

View Article and Find Full Text PDF

Purpose: To investigate retinal microvascular changes in ischemic stroke patients using optical coherence tomography angiography (OCT-A) and assess these alterations based on stroke etiology.

Methods: Case-control study conducted at Montpellier University Hospital from May 2021 to March 2022 (IRB: 202000607). Retinal vascular features were compared between strokes patients and age- and sex- matched controls.

View Article and Find Full Text PDF

Purpose: Diabetic retinopathy (DR) is usually diagnosed many years after diabetes onset. Indeed, an early diagnosis of DR remains a notable challenge, and, thus, developing novel approaches for earlier disease detection is of utmost importance. We aim to explore the potential of texture analysis of optical coherence tomography (OCT) retinal images in detecting retinal changes in streptozotocin (STZ)-induced diabetic animals at "silent" disease stages when early retinal molecular and cellular changes that cannot be clinically detectable are already occurring.

View Article and Find Full Text PDF

Purpose: A projection-resolved optical coherence tomography angiography (PR-OCTA) algorithm with slab-specific strategy was applied in polypoidal choroidal vasculopathy (PCV) to differentiate between polyp and branching vascular network (BVN) and improve polyp detection by en face OCTA.

Methods: Twenty-nine participants diagnosed with PCV by indocyanine green angiography (ICGA) and 30 participants diagnosed with typical neovascular age-related macular degeneration (nAMD) were enrolled. Polyps were classified into three categories after using the slab-specific PR algorithm.

View Article and Find Full Text PDF

Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!