The technology of electrically adjustable optical interfaces has found applications in, e.g., camera lenses, where an adjustable focal length provides automatic focusing for the camera. In this paper, we will investigate a liquid lens, where both the focal length and the tilt of this lens can be adjusted electrically. Specifically, the tilting ability of this lens will be tested by combining the liquid lens with a projector in order to scan lines across a three-dimensional (3D) object. The linearity, reproducibility, hysteresis, and time response of its tilting functionality will be tested. Further, crosstalk between the two functionalities of the liquid lens is tested for the specific case, where the focal length is set to infinity. Finally, the liquid lens and the projector in combination with four stereo cameras will be demonstrated as a 3D imaging setup.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.009074DOI Listing

Publication Analysis

Top Keywords

liquid lens
16
focal length
12
will tested
8
lens projector
8
lens
6
3d-imaging scanning
4
scanning light
4
light pattern
4
pattern projector
4
projector technology
4

Similar Publications

Liquid Crystalline Networks Hamper the Malignancy of Cancer Cells.

Adv Healthc Mater

January 2025

Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50, Florence, 50134, Italy.

Mimicking compositions and structures of extracellular matrix is widely studied to create in vitro tumor models, to deepen the understanding of the pathogenesis of the different types of cancer, and to identify new therapies. On the other hand, the use of synthetic materials to modulate cancer cell biology and, possibly, to reduce the malignancy of cancer cells through their exploitation is far less explored. Here, the study evaluates the effects of Liquid Crystalline Networks (LCNs) based scaffolds on the growth of A375 metastatic melanoma cells.

View Article and Find Full Text PDF

Exploiting photopolymerization to modulate liquid crystalline network actuation.

Soft Matter

January 2025

LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens.

View Article and Find Full Text PDF

Symmetrical wave ripples identified with NASA's Curiosity rover in ancient lake deposits at Gale crater provide a key paleoclimate constraint for early Mars: At the time of ripple formation, climate conditions must have supported ice-free liquid water on the surface of Mars. These features are the most definitive examples of wave ripples on another planet. The ripples occur in two stratigraphic intervals within the orbitally defined Layered Sulfate Unit: a thin but laterally extensive unit at the base of the Amapari member of the Mirador formation, and a sandstone lens within the Contigo member of the Mirador formation.

View Article and Find Full Text PDF

The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!